Decrease of ERK/MAPK overactivation in prefrontal cortex reverses early memory deficit in a mouse model of Alzheimer's disease.

J Alzheimers Dis

Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Fac. Farmacia y Bioquímica, UBA, CABA, Argentina.

Published: October 2014

Alzheimer's disease (AD) can be considered as a disease of memory in its initial clinical stages. Amyloid-β (Aβ) peptide accumulation is central to the disease initiation leading later to intracellular neurofibrillary tangles (NFTs) of cytoskeletal tau protein formation. It is under discussion whether different Aβ levels of aggregation, concentration, brain area, and/or time of exposure might be critical to the disease progression, as well as which intracellular pathways it activates. The aim of the present work was to study memory-related early molecular and behavioral alterations in a mouse model of AD, in which a subtle deregulation of the physiologic function of Aβ can be inferred. For this purpose we used triple-transgenic (3xTg) mice, which develop Aβ and tau pathology resembling the disease progression in humans. Memory impairment in novel object recognition task was evident by 5 months of age in 3xTg mice. Hippocampus and prefrontal cortex extra-nuclear protein extracts developed differential patterns of Aβ aggregation. ERK1/MAPK showed higher levels of cytosolic activity at 3 months and higher levels of nuclear activity at 6 months in the prefrontal cortex. No significant differences were found in JNK and NF-κB activity and in calcineurin protein levels. Finally, intra-PFC administration of a MEK inhibitor in 6-month-old 3xTg mice was able to reverse memory impairment, suggesting that ERK pathway alterations might at least partially explain memory deficits observed in this model, likely as a consequence of memory trace disruption.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-131076DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
12
3xtg mice
12
mouse model
8
alzheimer's disease
8
disease progression
8
memory impairment
8
higher levels
8
activity months
8
memory
6
disease
6

Similar Publications

The integration of self-efficacy and response-efficacy in decision making.

Sci Rep

January 2025

Department of Psychology, Rutgers University, 101 Warren Street, Smith Hall-Room 301, Newark, NJ, 07102, USA.

The belief that we can exert an influence in our environment is dependent on distinct components of perceived control. Here, we investigate the neural representations that differentially code for self-efficacy (belief in successfully executing a behavior) and response-efficacy (belief that the behavior leads to an expected outcome) and how such signals may be integrated to inform decision-making. Participants provided confidence ratings related to executing a behavior (self-efficacy), and the potential for a rewarding outcome (response-efficacy).

View Article and Find Full Text PDF

The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.

View Article and Find Full Text PDF

The study explored the pathological mechanism of doxorubicin chemotherapy-induced neurotoxicity and the intervention methods of traditional Chinese medicine. BALB/c mice were selected to establish tumor-bearing mouse models by orthotopic injection of 4T1 triple-negative breast cancer cells. After randomization, the mice were treated with doxorubicin chemotherapy or doxorubicin chemotherapy + Kaixin San(KXS).

View Article and Find Full Text PDF

Glutamatergic signaling is one of the primary targets of actions of alcohol in the brain, and dysregulated excitatory transmission in the prefrontal cortex (PFC) may contribute problematic drinking and relapse. A prominent component of glutamate signaling is the type 5 metabotropic glutamate (mGlu5) receptor. However, little is known about the role of this receptor type in subregions of the PFC that regulate either alcohol intake or alcohol-seeking behavior.

View Article and Find Full Text PDF

Pivotal to self-preservation is the ability to identify when we are safe and when we are in danger. Previous studies have focused on safety estimations based on the features of external threats and do not consider how the brain integrates other key factors, including estimates about our ability to protect ourselves. Here, we examine the neural systems underlying the online dynamic encoding of safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!