The spiral ganglion, which is primarily composed of spiral ganglion neurons and satellite glial cells, transmits auditory information from sensory hair cells to the central nervous system. Atrial natriuretic peptide (ANP), acting through specific receptors, is a regulatory peptide required for a variety of cardiac, neuronal and glial functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors (NPR-A and NPR-C) in the inner ear, their presence within the cochlear spiral ganglion and their regulatory roles during auditory neurotransmission and development is not known. Here we investigated the expression patterns and levels of ANP and its receptors within the cochlear spiral ganglion of the postnatal rat using immunofluorescence and immunoelectron microscopy techniques, reverse transcription-polymerase chain reaction and Western blot analysis. We have demonstrated that ANP and its receptors colocalize in both subtypes of spiral ganglion neurons and in perineuronal satellite glial cells. Furthermore, we have analyzed differential expression levels associated with both mRNA and protein of ANP and its receptors within the rat spiral ganglion during postnatal development. Collectively, our research provides direct evidence for the presence and synthesis of ANP and its receptors in both neuronal and non-neuronal cells within the cochlear spiral ganglion, suggesting possible roles for ANP in modulating neuronal and glial functions, as well as neuron-satellite glial cell communication, within the spiral ganglion during auditory neurotransmission and development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2013.11.010 | DOI Listing |
Tissue Cell
December 2024
ENT Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. Electronic address:
Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.
View Article and Find Full Text PDFJ Otol
July 2024
Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.
Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.
View Article and Find Full Text PDFBiotechnol J
December 2024
Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany.
The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.
View Article and Find Full Text PDFElife
December 2024
Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.
To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.
View Article and Find Full Text PDFElife
December 2024
Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!