We evaluated the effect of thermal challenge on the expression profile of heat shock protein 90 (Hsp90) among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breeds of cattle. The present investigation was focused on the comparative studies on Hsp90 expression among Frieswal and Sahiwal under in vitro and environmental heat stress. Measured immediately after the in vitro heat shock to the peripheral blood mononuclear cells (PBMCs), the relative expression of Hsp90 mRNA was significantly (P<0.05) higher in Sahiwal compared to those in Frieswal. In later intervals of time, the differences in the expression levels between the two breeds become negligible coming down towards the basal level. A similar pattern was observed in the protein concentration showing significantly (P<0.05) higher levels in Sahiwal compared to those in Frieswal. The second sets of experiments were undertaken during summer months (March to May) when temperature peaked from 37 to 45 °C. During these months, Frieswal cows consistently recorded higher rectal temperatures than the Sahiwal breed. Further during this peak summer stress, Sahiwal showed significantly higher levels of mRNA transcripts as well as protein concentration compared to the Frieswal breed. Our findings also interestingly showed that, the cell viability of PBMC are significantly higher among the Sahiwal than Frieswal. Taken together, the experiments of both induced in vitro and environmental stress conditions indicate that, Sahiwal may express higher levels of Hsp90 then Frieswal to regulate their body temperature and increase cell survivality under heat stressed conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2013.11.086 | DOI Listing |
J Exp Zool A Ecol Integr Physiol
January 2025
Department of Earth and Environmental Science, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.
Gastrointestinal infections present major challenges to ruminant livestock systems, and gut health is a key constraint on fitness, welfare, and productivity. Fecal biomarkers present opportunities to monitor animal health without using invasive methods, and with greater resolution compared to observational metrics. Here we developed enzyme-linked immunosorbent assays for three potential fecal biomarkers of gut health in domestic ruminants: two immunological (total immunoglobulin [Ig]A and total IgG) and one inflammatory (lactoferrin).
View Article and Find Full Text PDFFront Vet Sci
January 2025
Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China.
Introduction: Bovine coronavirus (BCoV) is an important pathogen of enteric and respiratory disease in cattle, resulting in huge economic losses to the beef and dairy industries worldwide. A specific and sensitive detection assay for BCoV is critical to the early-stage disease prevention and control.
Methods: We established a specific, sensitive, and stable assay for BCoV nucleic acid detection based on CRISPR/Cas13a combined with reverse transcription recombinase-aided amplification (RT-RAA) technology.
Front Vet Sci
January 2025
Department of Life and Consumer Sciences, Faculty of Agriculture and Life Sciences, University of South Africa, Pretoria, South Africa.
Introduction: The integration of traditional plant-based methods for controlling ectoparasites in the primary healthcare of livestock is progressively emerging as a crucial intervention to enhance livestock productivity in regions with limited resources, particularly in smallholder farming areas facing resource constraints. In Sekhukhune District, where livestock plays a vital role in rural livelihoods, cattle ticks present a significant challenge to cattle farming. This study aimed to document the ethnoveterinary practices employed by local communities to control cattle ticks, highlighting the use of alternative methods rooted in indigenous knowledge (IK).
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
The expansion of alternative food industries, including cultured meat, is often promoted as a strategy to reduce environmental pollution, particularly greenhouse gas emissions. However, comprehensive data on the environmental impacts of these industries remains limited. This study examines the environmental impacts of traditional meat and meat substitute production, highlighting their respective advantages and disadvantages.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea.
Cell-based meat (CBM) technology is a highly promising alternative to traditional animal agriculture, with considerable advantages in terms of sustainability, animal welfare, and food security. Nonetheless, CBM's successful commercialization is dependent on efficiently dealing with several critical concerns, including ensuring biological, chemical, and nutritional safety as well as navigating the global regulatory framework. To ensure CBM's biological safety, detecting and mitigating any potential hazards introduced during the manufacturing process is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!