Correlation of unsupported ²¹⁰Pb activity in soil and moss.

J Environ Radioact

University Novi Sad, Physics Department, Faculty of Science, 21000 Novi Sad, Republic of Serbia.

Published: March 2014

The activities of unsupported (210)Pb, a naturally occurring radionuclide, were measured in samples of soil and terrestrial mosses collected in Serbia. Considering that clay particles in soil have a high affinity for Pb adsorption, and that mosses usually capture aerosol particles to obtain necessary nutrients, measurable amounts of airborne (210)Pb, the daughter of (222)Rn, can be registered in both soil and mosses. The objective of the present study was to determine if it is possible to compare the activity of unsupported (210)Pb in soil and moss collected at the same sampling site, and to establish if a correlation exists between these measured values.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2013.11.009DOI Listing

Publication Analysis

Top Keywords

soil moss
8
unsupported 210pb
8
soil
5
correlation unsupported
4
unsupported ²¹⁰pb
4
²¹⁰pb activity
4
activity soil
4
moss activities
4
activities unsupported
4
210pb naturally
4

Similar Publications

Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings.

Int J Mol Sci

January 2025

Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warsaw, Poland.

Substituting peat moss with compost derived from organic waste in plant nurseries presents a promising solution for reducing environmental impact, improving waste management, and enhancing soil health while promoting sustainable agricultural practices. However, selecting the appropriate proportions of both materials is crucial for each plant species. This study investigates the effects of different ratios of compost and peat mixtures on the growth and development of pepper seedlings.

View Article and Find Full Text PDF

Active biomonitoring of mercury (Hg) using non-indigenous moss bags was performed for the first time within and around the former Hg mining area of Abbadia San Salvatore (Mt. Amiata, central Italy). The purpose was to discern the Hg spatial distribution, identify the most polluted areas, and evaluate the impacts of dry and wet deposition on mosses.

View Article and Find Full Text PDF

Novel species of fungi described in this study include those from various countries as follows: , from accumulated snow sediment sample. , on leaf spots of . , on submerged decaying wood in sea water, on , as endophyte from healthy leaves of .

View Article and Find Full Text PDF

Microtopography-induced hydrological heterogeneity promotes the co-assembly of vascular plant and biocrust communities, providing synergistic protective functions for the Great Wall.

Sci Total Environ

February 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

The Great Wall in China, constructed from rammed earth, faces threats from natural erosion. Vascular plants and biocrusts have enhanced the stability of the Great Wall through various mechanisms; however, understanding of the colonization processes of vascular plants and biocrusts on the wall, as well as their protective mechanisms, remains limited. This study investigated the vascular plant communities, biocrusts, soil moisture content, soil properties, aggregate mechanical stability, aggregate water stability, and soil erodibility factors across seven fine-scale microtopographies of the Great Wall (lower, middle, and upper zones on the east and west faces, as well as the wall crest).

View Article and Find Full Text PDF

Environmental gradients shape genetic variation in the desert moss, Syntrichia caninervis Mitt. (Pottiaceae).

Sci Rep

January 2025

Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.

The moss Syntrichia caninervis Mitt. is distributed throughout drylands globally, and often anchors ecologically significant communities known as biological soil crusts (biocrusts). The species occupies a variety of dryland habitats with varying levels of drought and temperature stress, suggesting the potential for ecological specialization within S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!