AI Article Synopsis

  • L6 skeletal muscle cells showed increased ICAM-1 expression when treated with H2O2, peaking at 200 μM, while the compound des-aspartate-angiotensin I (DAA-I) reduced this overexpression effectively at a concentration of 10(-10) M.
  • H2O2 activation of NFκB in muscle cells indicates that NFκB plays a key role in H2O2-induced ICAM-1 overexpression, and DAA-I inhibits both activation and nuclear translocation of NFκB.
  • DAA-I showed antioxidant effects in mice subjected to eccentric exercise, preventing ROS formation and ICAM-1 overexpression, suggesting potential treatments for muscle damage through modulation of the renin

Article Abstract

L6 skeletal muscle cells overexpressed ICAM-1 when treated with H2O2. Maximum effect was observed at 200 μM H2O2. Des-aspartate-angiotensin I (DAA-I) concentration-dependently attenuated the overexpression. Maximum attenuation occurred at 10(-10) M DAA-I. H2O2 activated NFκB and its translocation into the nucleus of L6 muscle cells suggesting that NFκB mediates the H2O2-induced overexpression of ICAM-1. DAA-I inhibited the activation and translocation of NFκB. H2O2 is a major oxidant formed during skeletal muscle contraction and is implicated in oxidative stress and skeletal muscle damage in excessive unaccustomed exercise. The data show that DAA-I has antioxidant action, and its action was further investigated in the soleus muscle of mice subjected to 240 min of eccentric exercise on a rodent treadmill. The eccentric exercise induced superoxide formation and overexpression of ICAM-1 in the soleus muscle of the mice at 3 days post exercise. DAA-I (0.2 nmole/kg/day) administered orally on day 1 (pre-exercise) and 2 days post-exercise attenuated both the ROS formation and ICAM-1 overexpression. Earlier studies show that DAA-I acts as an agonist on the angiotensin AT1 receptor and elicits responses opposing those of angiotensin II. The present and earlier findings support the recent suggestion that angiotensin II is involved in skeletal muscle damage, and curtailment of its actions via ACE inhibitors and losartan protects and improves skeletal muscle damage. These findings open up new avenues for treatment and management of skeletal muscle damage via the interventions of the renin angiotensin system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2013.12.003DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
28
muscle damage
16
muscle cells
12
soleus muscle
12
muscle mice
12
eccentric exercise
12
muscle
11
mice subjected
8
overexpression icam-1
8
skeletal
7

Similar Publications

Skeletal muscles contain lipids inside and outside cells, namely intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL), respectively; lipids have also been found to be interspersed between these muscles as adipose tissue, namely intermuscular adipose tissue (IMAT). Metabolized IMCL has been recognized as an important substrate for energy production and their metabolism is determined by the muscle oxidative capacity. Therefore, it has been speculated that muscle oxidative capacity is related to muscle lipid content.

View Article and Find Full Text PDF

Insights into the progressive impact of high-fat-diet induced insulin resistance on skeletal muscle and myocardium: A comprehensive study on C57BL6 mice.

PLoS One

January 2025

Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.

This study aims to provide a theoretical foundation for the future management of diabetes at various stages induced by a high-fat diet. Specifically, it seeks to determine the appropriate pharmacological interventions for each phase of diabetes development and the targeted therapeutic directions at different stages of diabetes progression. This investigation employed C57BL6 mice as experimental subjects, successfully establishing an insulin resistance model through a 12-week high-fat diet.

View Article and Find Full Text PDF

The present study examined factors associated with trunk skeletal muscle thickness (MT, an index for the amount of skeletal muscle) and echo intensity (EI, an index for the content of non-contractile tissue, such as intramuscular adipose tissue) in young Japanese men and women in consideration of habitual dietary intake. Healthy men (n = 26) and women (n = 24) aged 20 to 26 were enrolled. Trunk MT and EI were evaluated using ultrasound imaging at the height of the 3rd lumbar vertebra.

View Article and Find Full Text PDF

Short-term disuse leads to rapid declines in muscle mass and strength. These declines are driven by changes at all levels of the neuromuscular system; the brain, spinal cord and skeletal muscle. In addition to neural input from the central and peripheral nervous systems to the muscle, molecular factors originating in the muscle can be transported to the central nervous system.

View Article and Find Full Text PDF

Objective: To evaluate the Neuropathy Score-Reporting and Data System (NS-RADS) MRI grading system in conjunction with electrodiagnostic (EDx) testing for radial neuropathy at the elbow.

Materials And Methods: Patients presenting between 2010 and 2023 with suspected radial neuropathy who underwent both EDx testing in the form of electromyography and nerve conduction studies and MRI within a 12-month period were evaluated. Three blinded radiologists used the NS-RADS grading system to evaluate nerve entrapment (E grades), muscle denervation (M grades) proximally within the supinator/extensor carpi radialis brevis (ECRB), and more distally within the forearm extensor muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!