A series of twenty two novel 1-cyclopropyl-6-fluoro-4-oxo-7-(4-substitutedpiperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid analogues were synthesized, characterized ((1)H NMR, (13)C NMR and LCMS) and screened for their in vitro anti-tubercular and antibacterial activity. Many of these compounds exhibited MIC values in the range 7.32-136.10 μM against Mycobacterium tuberculosis H37Rv. Eight compounds were further subjected to cytotoxic studies. Furthermore, the title compounds were screened for antibacterial activity against Staphylococcus aureus ATCC 29213 (gram positive) and Escherichia coli ATCC 25922 (gram negative) bacteria. Many of these compounds exhibited MIC values in the range 0.44-34.02 μM. Compound 3f was found to be the most active with an MIC of 0.44 and 0.8 μM respectively against both the strains. In general, the antibacterial activity of title compounds was more prominent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2013.10.055 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.
High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97333, USA.
Caves are a unique ecosystem that harbor diverse microorganisms, and provide a challenging environment to the dwelling microbial communities, which may boost gene expression and can lead to the production of inimitable bioactive natural products. In this study, we obtained 59 actinobacteria from four different caves located in Bahadurkhel, District Karak, Pakistan. On the basis of taxonomic characteristics, 30 isolates were selected and screened for secondary metabolites production and bioactivity profiling.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Miami Miller School of Medicine, Center for Therapeutic Innovation, Miami, FL, USA.
Background: Rapamycin is currently in clinical trials for AD, yet numerous studies have suggested that rapamycin inhibits mTORC2 as well as mTORC1, which could be detrimental for AD pathology. Brain insulin resistance is a known aspect of AD pathology and mTORC2 inhibition reduces AKT phosphorylation, which is a main mediator of cellular insulin signaling, perpetuating insulin resistance and further worsening brain glucose metabolism. Here, we show that rapamycin prevents insulin-induced AKT phosphorylation in human neurons and explore the differential effects of mTORC1 and mTORC2 on neuronal insulin sensitivity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ahmadu Bello University Zaria, Zaria, Kaduna, Nigeria.
Background: Studies suggest a potential link between stroke and Alzheimer's disease wherein stroke may serve as a trigger for the onset or acceleration of Alzheimer's pathogenesis as damage to the brain's blood vessels may lead to the accumulation of amyloid beta protein which is a hallmark of Alzheimer's disease. Recent research has shown that stroke treatment may hold the key to treating Alzheimer's disease. The anti-inflammatory potentials of Cholinergic signaling are a novel therapeutic target in memory decline associated with Alzheimer's.
View Article and Find Full Text PDFMini Rev Med Chem
January 2025
Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia.
Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!