Prostaglandin D(2) is crucial for seizure suppression and postictal sleep.

Exp Neurol

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan. Electronic address:

Published: March 2014

AI Article Synopsis

Article Abstract

Epilepsy is a neurological disorder with the occurrence of seizures, which are often accompanied by sleep. Prostaglandin (PG) D2 is produced by hematopoietic or lipocalin-type PGD synthase (H- or L-PGDS) and involved in the regulation of physiological sleep. Here, we show that H-PGDS, L/H-PGDS or DP1 receptor (DP1R) KO mice exhibited more intense pentylenetetrazole (PTZ)-induced seizures in terms of latency of seizure onset, duration of generalized tonic-clonic seizures, and number of seizure spikes. Seizures significantly increased the PGD2 content of the brain in wild-type mice. This PTZ-induced increase in PGD2 was attenuated in the brains of L- or H-PGDS KO and abolished in L/H-PGDS KO mice. Postictal non-rapid eye movement sleep was observed in the wild-type and H-PGDS or DP2R KO, but not in the L-, L/H-PGDS or DP1R KO, mice. These findings demonstrate that PGD2 produced by H-PGDS and acting on DP1R is essential for seizure suppression and that the L-PGDS/PGD2/DP1R system regulates sleep that follows seizures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2013.12.002DOI Listing

Publication Analysis

Top Keywords

seizure suppression
8
dp1r mice
8
sleep
5
seizures
5
prostaglandin crucial
4
seizure
4
crucial seizure
4
suppression postictal
4
postictal sleep
4
sleep epilepsy
4

Similar Publications

Suppression of epileptic seizures by transcranial activation of K-selective channelrhodopsin.

Nat Commun

January 2025

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive.

View Article and Find Full Text PDF

In the current study, a novel series of 1,2,4-oxadiazoles were designed, synthesized, and evaluated for their biological activities. A cell-based antiproliferative screening was accomplished on the newly synthesized 1,2,4-oxadiazoles along with our previously reported aryl(alkyl)azoles (AAAs) containing middle heterocyclic cores thiazole and oxazole. Among the tested compounds, naphthyl- thiazoles demonstrated higher antiproliferative activity and B3 was identified as the most potent compound with IC values in the range of 2.

View Article and Find Full Text PDF

As speech-related symptoms of Landau-Kleffner syndrome (LKS) are often refractory to pharmacotherapy, and resective surgery is rarely available due to the involvement of the vital cortex, multiple subpial transection (MST) was suggested to improve patient outcome and preserve cortical functions. Here, we analyze the reports about MST use in LKS, regarding its impact on seizures, language, behavior, EEG, cognition, and reported adverse effects. In conditions like LKS, surgery is not a popular treatment option and presumably should be considered sooner.

View Article and Find Full Text PDF

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF

Unlabelled: Mild hypoxic-ischemic encephalopathy is common in neonates with no evidence-based therapies, and 30-40% of patients experience adverse outcomes. The nature and progression of mild injury is poorly understood. Thus, we studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent proteins as a novel readout of neuronal viability and activity at cellular resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!