While cure rates for several cancers have significantly improved, the outcome for patients with advanced solid tumors remains grimly unchanged over the last decades. Thus, there is a need for new therapies that could improve outcome for patients who fail current therapies. Oncolytic vaccinia virus (VV) would be an appealing addition to the current therapies of cancers because of its ability to infect, replicate in, and lyse tumor cells, and spread to other tumor cells in successive rounds of replication. While clinical studies have demonstrated their safety, the antitumor efficacy of oncolytic VVs has been suboptimal. Oncolytic VVs' major mode of action is the destruction of tumor cells, which can subsequently activate a component of the immune system called T cells that can travel to distant sites and target against any tumor they find. At present, virus spread through tumors, as well as the activation of tumor-specific T cells, is limited, explaining the observed suboptimal antitumor activity of current oncolytic VVs. Thus it would be desirable to make the oncolytic VVs more powerful stimulators of immunity through activating resident T cells within the tumors so that they will kill tumor cells and stop new tumors from growing. To activate T cells within tumors, a new molecule called a T-cell engager that couples the T cell and the tumor cell, which increases the effectiveness of the T cells and their activation, has been constructed. This review summarizes the progress of the emerging field of combinations of oncolytic virotherapy and T-cell based therapy.
Download full-text PDF |
Source |
---|
Cancer Commun (Lond)
January 2025
Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China.
Copper is an essential micronutrient in the human body, mainly acting as a crucial cofactor required for a wide range of physiological processes across nearly all cell types. Recent advances revealed that tumor cells seize copper to fulfill their rapid proliferation, metastasis, immune evasion, and so on by reprogramming the copper regulatory network, defined as cuproplasia. Thus, targeting copper chelation to reduce copper levels has been considered a rational tumor therapy strategy.
View Article and Find Full Text PDFCell Prolif
January 2025
Department of Nursing, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
Vasculogenic mimicry (VM) represents a novel form of angiogenesis discovered in numerous malignant tumours in recent years. Unlike traditional angiogenesis, VM facilitates tumour blood supply independently of endothelial cells by enabling tumour cells to form functional vascular networks. This phenomenon, where tumour cells replace endothelial cells to form tubular structures, plays a pivotal role in tumour growth and metastasis.
View Article and Find Full Text PDFCancer Med
February 2025
Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, China.
Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.
View Article and Find Full Text PDFHead Neck
January 2025
Department of Pathology, All India Institute of Medical Sciences, Rishikesh, India.
Background: To correlate between immunohistochemical expression of tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and natural killer (NK) cells with the AJCC 8th edition TNM staging system and other disease-modifying clinico-pathological variables.
Methods: The representative histology sections of tumor invasive margin (IM) and tumor core (TC) were selected according to the International Immuno-Oncology Biomarker Working Group and were subjected to immunohistochemistry with antibodies for TILs (CD3, CD8, FOXP3), NK Cells (CD57), TAMs (CD68, CD163) and pan-leukocyte marker (CD45). Histo-immuno-density-intensity (HIDI) scoring was calculated as a product of the proportion and intensity of staining.
Bioelectromagnetics
January 2025
Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA.
Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!