FGF signaling is required for brain left-right asymmetry and brain midline formation.

Dev Biol

Department of Neurobiology & Anatomy, University of Utah School of Medicine, Eccles Institute of Human Genetics, Building 533, Room 3160, 15 North 2030 East, Salt Lake City, UT 84112-5330, United States. Electronic address:

Published: February 2014

Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970204PMC
http://dx.doi.org/10.1016/j.ydbio.2013.11.020DOI Listing

Publication Analysis

Top Keywords

fgf signaling
36
fgf
9
left-right asymmetry
8
brain midline
8
signaling
8
role fgf
8
asymmetrically expressed
8
six3b six7
8
signaling leads
8
brain
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!