Purpose: To compare a fast 3D VIBE sequence with Dixon fat saturation and CAIPIRINHA acceleration techniques (3D VIBE(CAIPI-DIXON)) to a standard 2D FLASH sequence with spectral fat saturation and conventional GRAPPA acceleration technique (2D Flash(GRAPPA-fs)) for non-enhanced imaging of the pancreas.

Methods And Materials: In this retrospective, institutional review board-approved intra-individual comparison study, 29 patients (7 female, 22 male; mean age 60.4 ± 20.9 years) examined on a 48-channel 3.0-T MR system (MAGNETOM Skyra VD 13, Siemens Healthcare Sector, Germany) were included. 3D VIBE(CAIPI-DIXON) (TR/TE-3.95/2.5+1.27 ms; spatial resolution-1.2 × 1.2 × 3.0 mm(3); CAIPIRINHA 2 × 2 [1], acquisition time-0:12 min) and 2D Flash(GRAPPA-fs) (TR/TE-195/3.69 ms; 1.2 × 1.2 × 3.0 mm(3); GRAPPA 2, 3 × 0:21 min) sequences were performed in each subject in random order prior to the administration of an intravenous contrast agent. Two radiologists evaluated the images with regard to diagnostic preference. Semi-quantitative signal ratios were calculated for the pancreas versus the liver, spleen, muscle, and visceral fat. Inter-reader agreement was calculated using unweighted Cohen's kappa. Signal ratio results were analyzed using a univariate analysis of variance. Additional signal-to-noise (SNR) measurements were performed in a phantom.

Results: 3D VIBE(CAIPI-DIXON) was preferred in 72.4% (both readers) and 2D Flash(GRAPPA-fs) in 3.4%/6.9% (reader 1/2) of cases with a kappa value of 0.756. The main reasons for this preference were homogenous fat saturation with 3D VIBE(CAIPI-DIXON) and reduced motion artifacts due to a faster acquisition, leading to improved delineation of the pancreas. Signal ratios of pancreatic to fat signal for 3D VIBE(CAIPI-DIXON) (10.08 ± 3.48) and 2D Flash(GRAPPA-fs) (6.53 ± 3.07) were statistically different (P<.001). However, no additional statistically significant differences in signal ratios were identified (range: 0.73 ± 0.18 to 1.37 ± 0.40; .514
Conclusion: 3D VIBE(CAIPI-DIXON) enables robust pancreatic imaging with a shorter time and improved fat suppression relative to conventional 2D Flash(GRAPPA-fs). At an acquisition time of 12 seconds, 3D VIBE(CAIPI-DIXON) can be obtained in considerably less time than standard fat-saturated VIBE sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinimag.2013.11.005DOI Listing

Publication Analysis

Top Keywords

fat saturation
12
non-enhanced imaging
8
signal ratios
8
vibecaipi-dixon
6
fat
5
clinical application
4
application vibecaipi-dixon
4
vibecaipi-dixon non-enhanced
4
imaging pancreas
4
pancreas compared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!