Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: in silico study.

Comput Methods Programs Biomed

Department of Cardiovascular, Respiratory, Nephrologic, Anaesthesiologic and Geriatric Sciences, University "Sapienza" of Rome, Italy; National Institute of Cardiovascular Research, Bologna, Italy.

Published: February 2014

Patients assisted with left ventricular assist device (LVAD) may require prolonged mechanical ventilatory assistance secondary to postoperative respiratory failure. The goal of this work is the study of the interdependent effects LVAD like pulsatile catheter (PUCA) pump and mechanical ventilatory support or thoracic artificial lung (TAL), by the hemodynamic point of view, using a numerical simulator of the human cardiovascular system. In the simulator, different circulatory sections are described using lumped parameter models. Lumped parameter models have been designed to describe the hydrodynamic behavior of both PUCA pump and thoracic artificial lung. Ventricular behavior atrial and septum functions were reproduced using variable elastance model. Starting from simulated pathological conditions we studied the effects produced on some hemodynamic variables by simultaneous PUCA pump, thoracic artificial lung or mechanical ventilation assistance. Thoracic artificial lung was applied in parallel or in hybrid mode. The effects of mechanical ventilation have been simulated by changing mean intrathoracic pressure value from -4 mmHg to +5 mmHg. The hemodynamic variables observed during the simulations, in different assisted conditions, were: left and right ventricular end systolic (diastolic) volume, systolic/diastolic aortic pressure, mean pulmonary arterial pressure, left and right mean atrial pressure, mean systemic venous pressure and the total blood flow. Results show that the application of PUCA (without mechanical ventilatory assistance) increases the total blood flow, reduces the left ventricular end systolic volume and increases the diastolic aortic pressure. Parallel TAL assistance increases the right ventricular end diastolic (systolic) volume reduction both when PUCA is switched "ON" and both when PUCA is switched "OFF". By switching "OFF" the PUCA pump, it seems that parallel thoracic artificial lung assistance produces a greater cardiac output (respect to hybrid TAL assistance). Results concerning PUCA and TAL interaction produced by simulations cannot be compared with "in vivo" results since they are not presented in literature. But results concerning the effects produced by LVAD and mechanical ventilation have a trend consistent with those presented in literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2013.11.011DOI Listing

Publication Analysis

Top Keywords

thoracic artificial
24
artificial lung
24
puca pump
20
mechanical ventilation
16
left ventricular
12
mechanical ventilatory
12
puca
9
mechanical
8
lung assistance
8
ventilatory assistance
8

Similar Publications

Prognostic role of aetiological agent vs. clinical pattern in candidates to lead extraction for cardiac implantable electronic device infections.

Sci Rep

December 2024

Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.

Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.

View Article and Find Full Text PDF

The purpose of this study was to evaluate whether the optimal operating points of adult-oriented artificial intelligence (AI) software differ for pediatric chest radiographs and to assess its diagnostic performance. Chest radiographs from patients under 19 years old, collected between March and November 2021, were divided into test and exploring sets. A commercial adult-oriented AI software was utilized to detect lung lesions, including pneumothorax, consolidation, nodule, and pleural effusion, using a standard operating point of 15%.

View Article and Find Full Text PDF

Background: Delayed lead perforation is a rare complication of cardiac implantable electronic device (CIED). Clinical presentations range from completely asymptomatic to pericardial tamponade. Surgical lead extraction is recommended and transvenous lead extraction (TLE) with surgical backup is an alternative method.

View Article and Find Full Text PDF

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN.

Materials And Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals.

View Article and Find Full Text PDF

Background: The most common cause of death in patients with peripheral artery disease (PAD) are major adverse cardiovascular events (MACEs), including myocardial infarction (MI) and stroke. However, data on biomarkers that could be used to help predict MACEs in patients with PAD to guide clinical decision making is limited. Angiogenesis-related proteins have been demonstrated to play an important role in systemic atherosclerosis and may act as prognostic biomarkers for MACEs in patients with PAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!