Investigation of cosmic-ray muon induced processes by the MIREDO facility.

Appl Radiat Isot

University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia.

Published: May 2014

The MIREDO (Muon Induced Rare Event Dynamic Observatory) spectrometer system is primarily developed for the study of cosmic muon induced processes in different materials. Exploration of such interactions can be important for ultra-low background experiments. The system is based on the 100% relative efficiency ultra-low-background HPGe spectrometer. With the addition of two plastic scintillators and a fast-slow coincidence circuit, the coincidence events between the plastic detectors and the HPGe spectrometer have been investigated. First results derived for a CaO powder sample, placed in a Marinelli beaker, are presented and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2013.11.102DOI Listing

Publication Analysis

Top Keywords

muon induced
12
induced processes
8
hpge spectrometer
8
investigation cosmic-ray
4
cosmic-ray muon
4
processes miredo
4
miredo facility
4
facility miredo
4
miredo muon
4
induced rare
4

Similar Publications

Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a major cause of death worldwide. This urges the search for alternatives to antibiotics, and antimicrobial polymers hold promise due to their reduced susceptibility to AMR. The topology of such macromolecules has a strong impact on their activity, with bottlebrush architectures outperforming their linear counterparts significantly.

View Article and Find Full Text PDF

We experimentally study the evolution of the magnetic moment m and exchange interaction J as a function of hydrostatic pressure in the zero-field helimagnetic phase of the strongly correlated electron system MnSi. The suppression of magnetic order at ≈1.5  GPa is shown to arise from the J collapse and not from a quantum fluctuations induced reduction of m.

View Article and Find Full Text PDF

Superinsulating nanofibrillar cellulose foams have the potential to replace fossil-based insulating materials, but the development is hampered by the moisture-dependent heat transport and the lack of direct measurements of phonon transport. Here, inelastic neutron scattering is used together with wide angle X-ray scattering (WAXS) and small angle neutron scattering to relate the moisture-dependent structural modifications to the vibrational dynamics and phonon transport and scattering of cellulose nanofibrils from wood and tunicate, and wood cellulose nanocrystals (W-CNC). The moisture interacted primarily with the disordered regions in nanocellulose, and WAXS showed that the crystallinity and coherence length increased as the moisture content increased.

View Article and Find Full Text PDF

Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE).

J Mater Chem A Mater

January 2025

Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland

Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!