A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P.

Immunity

Inserm U786, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France; Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France. Electronic address:

Published: December 2013

Upon infection with Shigella flexneri, epithelial cells release ATP through connexin hemichannels. However, the pathophysiological consequence and the regulation of this process are unclear. Here we showed that in intestinal epithelial cell ATP release was an early alert response to infection with enteric pathogens that eventually promoted inflammation of the gut. Shigella evolved to escape this inflammatory reaction by its type III secretion effector IpgD, which blocked hemichannels via the production of the lipid PtdIns5P. Infection with an ipgD mutant resulted in rapid hemichannel-dependent accumulation of extracellular ATP in vitro and in vivo, which preceded the onset of inflammation. At later stages of infection, ipgD-deficient Shigella caused strong intestinal inflammation owing to extracellular ATP. We therefore describe a new paradigm of host-pathogen interaction based on endogenous danger signaling and identify extracellular ATP as key regulator of mucosal inflammation during infection. Our data provide new angles of attack for the development of anti-inflammatory molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2013.11.013DOI Listing

Publication Analysis

Top Keywords

extracellular atp
12
production lipid
8
ptdins5p infection
8
atp
6
inflammation
5
infection
5
shigella
4
shigella effector
4
effector dampens
4
dampens inflammation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!