Permanganate (MnO4(-)) is a strong oxidant that is widely used for treating chlorinated ethylenes in groundwater. This study aims to develop hyper-saline MnO4(-) solution (MnO4(-) gel; PG) that can be injected into aquifers via wells, slowly gelates over time, and slowly release MnO4(-) to flowing water. In this study, compatibility and miscibility of gels, such as chitosan, aluminosilicate, silicate, and colloidal silica gels, with MnO4(-) were tested. Of these gels, chitosan was reactive with MnO4(-). Aluminosilicates were compatible but not readily miscible with MnO4(-). Silicates and colloidal silica were both compatible and miscible with MnO4(-), and gelated with addition of KMnO4 granules. Colloidal silica has low initial viscosity (<15cP), exhibited delayed gelation characteristics with the lag times ranging from 0 to 200min. Release of MnO4(-) from the colloidal silica-based PG gel occurred in a delayed fashion, with maximum duration of 24h. These results suggested that colloidal silica can be used to create PG or delayed-gelling forms containing other oxidants which can be used for groundwater remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.11.008DOI Listing

Publication Analysis

Top Keywords

colloidal silica
12
mno4-
8
gels chitosan
8
compatible miscible
8
miscible mno4-
8
permanganate gel
4
gel groundwater
4
groundwater remediation
4
remediation compatibility
4
compatibility gelation
4

Similar Publications

Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications.

Adv Colloid Interface Sci

January 2025

School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.

Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.

View Article and Find Full Text PDF

One-step antifouling coating of polystyrene using engineered polypeptides.

J Colloid Interface Sci

January 2025

Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4 6708 WE Wageningen, The Netherlands. Electronic address:

Unwanted nonspecific adsorption caused by biomolecules influences the lifetime of biomedical devices and the sensing performance of biosensors. Previously, we have designed B-M-E triblock proteins that rapidly assemble on inorganic surfaces (gold and silica) and render those surfaces antifouling. The B-M-E triblock proteins have a surface-binding domain B, a multimerization domain M and an antifouling domain E.

View Article and Find Full Text PDF

Fabricating a stable interface of tetracoordinated-phosphorus and framework Al within P-doping ZSM-5 zeolite for catalytic methanol-to-propylene reaction.

J Colloid Interface Sci

January 2025

Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China. Electronic address:

Phosphorus (P)-doping H-ZSM-5 zeolites, which is crucial for industrial applications, aim to adjust both acidity and framework stability while optimizing product distribution in heterogeneous catalysis. Nonetheless, current phosphating methods often suffer from inadequate phosphorus dispersion and unclear interfacial interactions with framework aluminum (Al). In this work, P-doping ZSM-5 zeolites were successfully one-step prepared by using tributylphosphine served as an organophosphorus precursor, assisting by density functional theory calculations.

View Article and Find Full Text PDF

Formation of Highly Negatively Charged Supported Lipid Bilayers on a Silica Surface: Effects of Ionic Strength and Osmotic Stress.

Langmuir

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.

Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.

View Article and Find Full Text PDF

Water-based acrylic emulsions are a crucial component of water-based ink. Preventing visible cracks in emulsion coating during drying is a great challenge due to the high polarity and high surface tension of water. Herein, we propose that the cracking resistance of the coating can be enhanced through the incorporation of hydrophobic silica nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!