A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diminishing glutathione availability and age-associated decline in neuronal excitability. | LitMetric

Diminishing glutathione availability and age-associated decline in neuronal excitability.

Neurobiol Aging

Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada. Electronic address:

Published: May 2014

AI Article Synopsis

  • Oxidative stress is linked to reduced electrical excitability in aging neurons, but the mechanisms are not well understood.
  • In a study on the gastropod Lymnaea stagnalis, researchers found that the brain's glutathione levels decrease with age, impacting neuronal excitability.
  • Using various treatments, they demonstrated that enhancing glutathione reversed age-related excitability decline, highlighting its crucial role in maintaining neuronal function during aging.

Article Abstract

Oxidative stress is frequently implicated in diminished electrical excitability of aging neurons yet the foundations of this phenomenon are poorly understood. This study explored links between alterations in cellular thiol-redox state and age-associated decline in electrical excitability in identified neurons (right pedal dorsal 1 [RPeD1]) of the gastropod Lymnaea stagnalis. Intracellular thiol redox state was modulated with either dithiothreitol or membrane permeable ethyl ester of the antioxidant glutathione (et-GSH). Neuronal antioxidant demand was manipulated through induction of lipid peroxidation with 2,2'-azobis-2-methyl-propanimidamide-dihydrochloride (AAPH). Glutathione synthesis was manipulated with buthionine sulfoximine (BSO). We show that; glutathione content of snail brains declines with age, whereas pyroglutamate content increases; treatment with AAPH and BSO alone aggravated the natural low excitability state of old RPeD1, but only the combination of AAPH + BSO affected electrical excitability of young RPeD1; et-GSH reversed this effect in young RPeD1; et-GSH and dithiothreitol treatment reversed age-associated low excitability of old RPeD1. Together, these data argue for a tight association between glutathione availability and the regulation of neuronal electrical excitability and indicate perturbation of cellular thiol-redox metabolism as a key factor in neuronal functional decline in this gastropod model of biological aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.007DOI Listing

Publication Analysis

Top Keywords

electrical excitability
16
glutathione availability
8
age-associated decline
8
cellular thiol-redox
8
low excitability
8
young rped1
8
rped1 et-gsh
8
excitability
7
diminishing glutathione
4
availability age-associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!