Memory for odour information may result from temporal coupling between the olfactory and hippocampal systems. Respiration defines the frequency of olfactory perception, but how the respiratory rate affects hippocampal oscillations remains poorly understood. The afferent connectivity of the medial septum/diagonal band of Broca complex (MS/DB) proposes this region as a crossroads between respiratory and limbic pathways. Here we investigate if the firing rates of septal neurons integrate respiratory rate signals. We demonstrate that approximately 50% of MS/DB neurons are temporally correlated with sniffing frequency. Moreover, a group of slow-spiking septal neurons are phase-locked to the sniffing cycle. We show that inter-burst intervals of MS/DB theta cells relate to the sniff rate. Intranasal odour infusion evokes sniff phase preference for the activity of fast-spiking MS/DB neurons. Concurrently, the infusion augments the correlation between sniffing and limbic theta oscillations. During periods of sniffing-theta correlation, CA1 place cells fired preferentially during the inhalation phase, suggesting the theta cycle as a coherent time frame for central olfactory processing. Furthermore, injection of the GABAergic agonist muscimol into medial septum induces a parallel decrease of sniffing and theta frequencies. Our findings provide experimental evidence that MS/DB does not merely generate theta rhythm, but actively integrates sensorimotor stimuli that reflect sniffing rate. Such integration may provide temporal oscillatory synchronisation of MS/DB-innervated limbic structures with the sniffing cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165309 | PMC |
http://dx.doi.org/10.1111/ejn.12449 | DOI Listing |
Neurosci Res
January 2025
Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan; School of Human Care Studies, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nishin city, Aichi 470-0196, Japan. Electronic address:
Huntingtin-associated protein 1 (HAP1) is an essential constituent of the stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for several neurodegenerative disorders, including huntingtin (HTT) in Huntington's disease. Previous in vitro studies showed that compared to normal HTT, STB/HAP1 exhibited a higher binding affinity for mutant HTT. However, the detailed in vivo relationships of STB/HAP1 with endogenous HTT have not been clarified yet.
View Article and Find Full Text PDFElife
January 2025
Centre for Neuroscience, Indian Institute of Science, Bengaluru, India.
Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood.
View Article and Find Full Text PDFPharmacol Res
January 2025
Gill Institute for Neuroscience, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States. Electronic address:
Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.
The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!