High-resolution three-dimensional numerical simulations are carried out for hydrothermal waves in a thermocapillary liquid bridge with Prandtl number Pr=4 and length-to-radius aspect ratio Γ=0.66. The flow topology is analyzed using Poincaré sections in a frame of reference co-rotating with the phase velocity of the wave. We find regions of regular and chaotic motion. The regular regions are shown to be of key importance for dissipative structures of transported particles. Suspended particles which are passively advected in the bulk, but experience dissipation in a thin layer below the free surface, can rapidly form dissipative structures, also called particle accumulation structures. The shape and the formation time of the particulate structures are determined by the location of the invariant tori of the flow field with respect to the sub-surface layer in which the dissipation of the particle motion acts. The results from a hard-wall particle-free-surface interaction model are in good agreement with experimental observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.053016 | DOI Listing |
Sci Rep
January 2025
College of Physics and Electronic Science, Hubei Normal University, Huangshi, 435002, P. R. China.
We propose a double-cavity optomechanical system with nonreciprocal coupling to realize tunable optical nonreciprocity that has the prospect of making an optical device for the manipulation of information processing and communication. Here we investigate the steady-state dynamic processes of the double-cavity system and the transmission of optical waves from opposite cavity directions. The transmission spectrum of the probe field is presented in detail and the physical mechanism of the induced transparency window is analyzed.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.
View Article and Find Full Text PDFSoft Matter
January 2025
Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.
View Article and Find Full Text PDFExtreme Mech Lett
March 2025
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
Cutting soft materials on the microscale has emerging applications in single-cell studies, tissue microdissection for organoid culture, drug screens, and other analyses. However, the cutting process is complex and remains incompletely understood. Furthermore, precise control over blade geometries, such as the blade tip radius, has been difficult to achieve.
View Article and Find Full Text PDFNano Lett
January 2025
School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan 450046, China.
Spray cooling, which dissipates heat through droplet evaporation, is an efficient cooling method. Using seawater instead of freshwater in spraying is appealing given the intensifying global water crisis. However, seawater-based cooling suffers from salt accumulation on hot surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!