A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Infinite-dimensional Bayesian filtering for detection of quasiperiodic phenomena in spatiotemporal data. | LitMetric

Infinite-dimensional Bayesian filtering for detection of quasiperiodic phenomena in spatiotemporal data.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Biomedical Engineering and Computational Science (BECS), Aalto University, P. O. Box 12200, FI-00076 AALTO, Finland.

Published: November 2013

This paper introduces a spatiotemporal resonator model and an inference method for detection and estimation of nearly periodic temporal phenomena in spatiotemporal data. The model is derived as a spatial extension of a stochastic harmonic resonator model, which can be formulated in terms of a stochastic differential equation. The spatial structure is included by introducing linear operators, which affect both the oscillations and damping, and by choosing the appropriate spatial covariance structure of the driving time-white noise process. With the choice of the linear operators as partial differential operators, the resonator model becomes a stochastic partial differential equation, which is compatible with infinite-dimensional Kalman filtering. The resulting infinite-dimensional Kalman filtering problem allows for a computationally efficient solution as the computational cost scales linearly with measurements in the temporal dimension. This framework is applied to weather prediction and to physiological noise elimination in functional magnetic resonance imaging brain data.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.88.052909DOI Listing

Publication Analysis

Top Keywords

resonator model
12
phenomena spatiotemporal
8
spatiotemporal data
8
differential equation
8
linear operators
8
partial differential
8
infinite-dimensional kalman
8
kalman filtering
8
infinite-dimensional bayesian
4
bayesian filtering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!