This work discusses the sedimentation stability and aging of aqueous suspensions of Laponite in the presence of cetyltrimethylammonium bromide (CTAB). The concentration of Laponite was fixed at a constant level C(l)=2%wt, which corresponds to the threshold between equilibrium gel IG(1) and glass IG(2) states. The concentration of CTAB C(s) was within 0-0.3 %wt. In the presence of CTAB, the Laponite aqueous suspensions were unstable against sedimentation and separated into the upper and bottom layers (U and B layers, respectively). The dynamic light-scattering technique has revealed that addition of CTAB even at a rather small concentration, C(s)=0.0164 %wt (0.03 cation exchange capacity), induced noticeable changes in the aging dynamics of the U layer. It was explained by equilibration of CTAB molecules that were initially nonuniformly distributed between different Laponite particles. Accelerated stability analysis by means of analytical centrifugation with rotor speed ω=500-4000 rpm revealed three sedimentation regimes: continuous (I, C(s)<0.14 %wt), zonelike (II, 0.14
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.052301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!