A new connection between maximum-power Curzon-Ahlborn thermal cycles and maximum-work reversible cycles is proposed. This linkage is built through a mapping between the exponents of a class of heat transfer laws and the exponents of a family of heat capacities depending on temperature. This connection leads to the recovery of known results and to a wide and interesting set of results for a class of thermal cycles. Among other results it was found that it is possible to use analytically closed expressions for maximum-work efficiencies to calculate good approaches to maximum-power efficiencies. Behind the proposed connection is an interpretation of endoreversibility hypothesis. Additionally, we suggest that certain reversible maximum-work cycles depending on working substance can be used as reversible landmarks for FTT maximum-power cycles, which also depend on working substance properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.052142 | DOI Listing |
J Hazard Mater
March 2025
Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:
Herein, a highly efficient and recyclable biocatalyst was developed using stabilized enzyme aggregates on amino-functionalized magnetic biochar for removing persistent organic pollutants from water. The biochar derived from biomass featured abundant hydroxyl functional groups, after functionalization with amino functional groups and magnetic nanoparticles, it was employed for laccase immobilization via enzyme electrostatic adsorption, precipitation and cross-linking in a favorable orientation. This immobilized enzyme aggregates exhibited enhanced pH tolerance, thermal and storage stability than free enzyme.
View Article and Find Full Text PDFMicrob Ecol
March 2025
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de Mexico, México.
Bacteria and Archaea are microorganisms that play key roles in the biogeochemical transformations that control water quality in freshwater ecosystems, such as in reservoirs. In this study, we characterize the prokaryotic community of a high-relevance tropical eutrophic reservoir using a 16S rRNA gene survey during a low-water level fluctuation period mainly used for storage, associating the distribution of these microorganisms with the hydrogeochemical conditions of the water column. Our findings revealed that diversity and structure of the prokaryotic community exhibited spatio-temporal variations driven by the annual circulation-stratification hydrodynamic cycle and are significantly correlated with the concentrations of dissolved oxygen (DO), soluble reactive phosphorus (SRP), and dissolved inorganic nitrogen (DIN).
View Article and Find Full Text PDFAdv Mater
March 2025
Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
Mechanical expansion and contraction of pores within photosynthetic organisms regulate a series of processes that are necessary to manage light absorption, control gas exchange, and regulate water loss. These pores, known as stoma, allow the plant to maximize photosynthetic output depending on environmental conditions such as light intensity, humidity, and temperature by actively changing the size of the stomal opening. Despite advances in artificial photosynthetic systems, little is known about the effect of such mechanical actuation in synthetic materials where chemical reactions occur.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
State Key Laboratory of Mechanics and Control for Aerospace Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Borophene, a revolutionary two-dimensional (2D) material with exceptional electrical, physical, and chemical properties, holds great promise for high-performance, highly integrated information storage systems. However, its metallic nature and structural instability have significantly limited its practical applications. To address these challenges, hydrogenated borophene has emerged as an ideal alternative, offering enhanced stability and semiconducting properties.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Mechanical Engineering, University of Nevada-Reno, Reno, NV 89557, USA.
Cellulose nanofibers (CNFs), cellulose nanomaterials (CNMs), and cellulose-based composites represent a convergence of material science, sustainability, and advanced engineering, paving the way for innovative and eco-friendly materials. This paper presents a comprehensive review of these materials, encompassing their extraction, preparation methods, properties, applications, and future directions. The manufacturing of CNFs and CNMs leverages diverse techniques-chemical, mechanical, and enzymatic-with each offering distinct advantages in tailoring material characteristics to meet specific needs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!