Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Green-Kubo formula for linear response coefficients is modified when dealing with nonequilibrium dynamics. In particular, negative differential conductivities are allowed to exist away from equilibrium. We give a unifying framework for such a negative differential response in terms of the frenetic contribution in the nonequilibrium formula. It corresponds to a negative dependence of the escape rates and reactivities on the driving forces. Partial caging in state space and reduction of dynamical activity with increased driving cause the current to drop. These are time-symmetric kinetic effects that are believed to play a major role in the study of nonequilibria. We give various simple examples treating particle and energy transport, which all follow the same pattern in the dependence of the dynamical activity on the nonequilibrium driving, made visible from recently derived nonequilibrium response theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.88.052109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!