Proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains are major components of the plant immune system. They usually mediate resistance against a subgroup of races of a specific pathogen. For the allelic series of the wheat powdery mildew resistance gene Pm3, alleles with a broad and a narrow resistance spectrum have been described. Here, we show that a broad Pm3 spectrum range correlates with a fast and intense hypersensitive response (HR) in a Nicotiana transient-expression system and this activity can be attributed to two particular amino acids in the ARC2 subdomain of the NBS. The combined substitution of these amino acids in narrow-spectrum PM3 proteins enhances their capacity to induce an HR in Nicotiana benthamiana, and we demonstrate that these substitutions also enlarge the resistance spectrum of the Pm3f allele in wheat. Finally, using Bph14, we show that the region carrying the relevant amino acids also plays a role in the HR regulation of another coiled-coil NBS-LRR resistance protein. These results highlight the importance of an optimized NBS-'molecular switch' for the conversion of initial pathogen perception by the LRR into resistance-protein activation, and we describe a possible approach to extend the effectiveness of resistance genes via minimal targeted modifications in the NBS domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-10-13-0297-FI | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!