We reveal that a slight change in the functional group of the oligopeptide block incorporated into the poloxamer led to drastically different hierarchical assembly behavior and rheological properties in aqueous media. An oligo(L-Ala-co-L-Phe-co-β-benzyl L-Asp)-poloxamer-oligo(β-benzyl-L-Asp-co-L-Phe-co-L-Ala) block copolymer (OAF-(OAsp(Bzyl))-PLX-(OAsp(Bzyl))-OAF, denoted as polymer 1), which possessed benzyl group on the aspartate moiety of the peptide block, was synthesized through ring-opening polymerization. The benzyl group on aspartate was then converted to carboxylic acid to yield oligo(L-Ala-co-L-Phe-co-L-Asp)-poloxamer-oligo(L-Asp-co-L-Phe-co-L-Ala) (OAF-(OAsp)-PLX-(OAsp)-OAF, denoted as polymer 2). Characterization of the peptide secondary structure in aqueous media by circular dichroism revealed that the oligopeptide block in polymer 1 exhibited mainly an α-helix conformation, whereas that in polymer 2 adopted predominantly a β-sheet conformation at room temperature. The segmental dynamics of the PEG in polymer 1 remained essentially unperturbed upon heating from 10 to 50 °C; by contrast, the PEG segmental motion in polymer 2 became more constrained above ca. 35 °C, indicating an obvious change in the chemical environment of the block chains. Meanwhile, the storage modulus of the polymer 2 solution underwent an abrupt increase across this temperature, and the solution turned into a gel. Wet-cell TEM observation revealed that polymer 1 self-organized to form microgel particles of several hundred nanometers in size. The microgel particle was retained as the characteristic morphological entity such that the PEG chains did not experience a significant change of their chemical environment upon heating. The hydrogel formed by polymer 2 was found to contain networks of nanofibrils, suggesting that the hydrogen bonding between the carboxylic acid groups led to an extensive stacking of the β sheets along the fibril axis at elevated temperature. The in vitro cytotoxicity of the polymer 2 aqueous solution was found to be low in human retinal pigment epithelial cells. The low cytotoxicity coupled with the sol-gel transition makes the corresponding hydrogel a good candidate for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la403331fDOI Listing

Publication Analysis

Top Keywords

polymer
10
block copolymer
8
functional group
8
oligopeptide block
8
aqueous media
8
denoted polymer
8
benzyl group
8
group aspartate
8
carboxylic acid
8
change chemical
8

Similar Publications

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and α-smooth muscle (α-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro.

View Article and Find Full Text PDF

A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!