Antimicrobial surfaces using covalently bound polyallylamine.

Biomacromolecules

Department of Chemical Engineering, ‡Department of Mechanical Engineering, and §School of Biomedical Engineering and Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States.

Published: January 2014

We investigated the antimicrobial properties of the cationic polymer polyallylamine (PA) when covalently bonded to glass. The objective was to obtain a robust attachment, yet still allow extension of the polymer chain into solution to enable interaction with the bacteria. The PA film displayed strong antimicrobial activity against Staphylococcus epidermidis , Staphylococcus aureus , and Pseudomonas aeruginosa , which includes both Gram-positive and Gram-negative bacteria. Glass surfaces were prepared by a straightforward two-step procedure of first functionalizing with epoxide groups using 3-glycidoxypropyltrimethoxy silane (GOPTS) and then exposing to PA so that the PA could bind via reaction of a fraction of its amine groups. The surfaces were characterized using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy to verify the presence of the polymer on the surface, zeta potential measurements to estimate the surface charge of the films, and atomic force microscopy to determine the extension of the polymer chains into solution. Antimicrobial properties of these coatings were evaluated by spraying aqueous suspensions of bacteria on the functionalized glass slides, incubating them under agar, and counting the number of surviving cell colonies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm401440hDOI Listing

Publication Analysis

Top Keywords

antimicrobial properties
8
extension polymer
8
antimicrobial
4
antimicrobial surfaces
4
surfaces covalently
4
covalently bound
4
bound polyallylamine
4
polyallylamine investigated
4
investigated antimicrobial
4
properties cationic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!