Comparison of particle mass and solid particle number (SPN) emissions from a heavy-duty diesel vehicle under on-road driving conditions and a standard testing cycle.

Environ Sci Technol

Department of Mechanical Engineering, and ‡Center for Environmental Research and Technology (CE-CERT), College of Engineering, University of California Riverside, Riverside, California 92521, United States.

Published: October 2015

It is important to understand the differences between emissions from standard laboratory testing cycles and those from actual on-road driving conditions, especially for solid particle number (SPN) emissions now being regulated in Europe. This study compared particle mass and SPN emissions from a heavy-duty diesel vehicle operating over the urban dynamometer driving schedule (UDDS) and actual on-road driving conditions. Particle mass emissions were calculated using the integrated particle size distribution (IPSD) method and called MIPSD. The MIPSD emissions for the UDDS and on-road tests were more than 6 times lower than the U.S. 2007 heavy-duty particulate matter (PM) mass standard. The MIPSD emissions for the UDDS fell between those for the on-road uphill and downhill driving. SPN and MIPSD measurements were dominated by nucleation particles for the UDDS and uphill driving and by accumulation mode particles for cruise and downhill driving. The SPN emissions were ∼ 3 times lower than the Euro 6 heavy-duty SPN limit for the UDDS and downhill driving and ∼ 4-5 times higher than the Euro 6 SPN limit for the more aggressive uphill driving; however, it is likely that most of the "solid" particles measured under these conditions were associated with a combination release of stored sulfates and enhanced sulfate formation associated with high exhaust temperatures, leading to growth of volatile particles into the solid particle counting range above 23 nm. Except for these conditions, a linear relationship was found between SPN and accumulation mode MIPSD. The coefficient of variation (COV) of SPN emissions of particles >23 nm ranged from 8 to 26% for the UDDS and on-road tests.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es403578bDOI Listing

Publication Analysis

Top Keywords

spn emissions
20
particle mass
12
solid particle
12
on-road driving
12
driving conditions
12
downhill driving
12
spn
9
emissions
9
driving
9
particle number
8

Similar Publications

This study compares emissions from Euro VI-D Diesel and CNG buses across temperatures from -7 °C to 35 °C. Pollutants including NOx, THC, CH, CO, NH, NO, HCHO, Solid Particle Number larger than 23 nm (SPN23) and larger than 10 nm (SPN10) were measured. Both buses complied with Euro VI-D but exceeded European Commission's proposed Euro 7 limits, notably for NOx and SPN10.

View Article and Find Full Text PDF

The study investigates the efficiency of integrating Machine Learning (ML) in clinical practice for diagnosing solitary pulmonary nodules' (SPN) malignancy. Patient data had been recorded in the Department of Nuclear Medicine, University Hospital of Patras, in Greece. A dataset comprising 456 SPN characteristics extracted from CT scans, the SUVmax score from the PET examination, and the ultimate outcome (benign/malignant), determined by patient follow-up or biopsy, was used to build the ML classifier.

View Article and Find Full Text PDF

Radioactive hybrid semiconducting polymer nanoparticles for imaging-guided tri-modal therapy of breast cancer.

J Mater Chem B

June 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.

Due to the rapid progression and aggressive metastasis of breast cancer, its diagnosis and treatment remain a great challenge. The simultaneous inhibition of tumor growth and metastasis is necessary for breast cancer to obtain ideal therapeutic outcomes. We herein report the development of radioactive hybrid semiconducting polymer nanoparticles (SPN) for imaging-guided tri-modal therapy of breast cancer.

View Article and Find Full Text PDF

Solid pseudopapillary neoplasms (SPN) of the pancreas are presently recognized as low-grade malignant tumors that are frequently observed in young females. This tumor has a low incidence and is associated with an excellent prognosis following surgical resection. Typical SPNs primarily affect the pancreas and tend to have moderate or asymptomatic manifestations.

View Article and Find Full Text PDF

Objective: This study aimed to determine the thoracic and extra-thoracic extension of the disease in patients diagnosed with lung cancer and who had whole-body F18-fluorodeoxyglucose positron emission tomography/CT imaging and to investigate whether there is a relationship between tumor size and extrathoracic spread.

Methods: A total of 308 patients diagnosed with lung cancer were included in this study. These 308 patients were first classified as group 1 (SPN 30 mm>longest lesion diameter ≥10 mm) and group 2 (lung mass (longest lesion diameter ≥30 mm), and then the same patients were classified as group 3 (nodular diameter of ≤20 mm) and group 4 (nodular size of >20 mm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!