In this work, the free-radical polymerization (FRP) of widely used fluorinated monomers was investigated. Computational studies were conducted to assess the FRP kinetics of each binary copolymerization between vinylidene fluoride (VDF), hexafluoropropylene (HFP), and tetrafluoroethylene (TFE). More specifically, all calculations were performed using density functional theory (DFT), and the B3LYP level of theory was used to optimize structures and determine absolute minimum energy geometries, whereas the electronic energies were estimated using B3LYP/6-31G(d,p) as well as a higher level of theory, MPWB1K/6-31G(d,p). Transition state theory was employed to determine kinetic parameters according to the terminal model of copolymerization. The homopolymerization of VDF and all of its corresponding copolymerizations were investigated by taking into account every possible propagation reaction (head to head, head to tail, tail to tail, head to monomer, tail to monomer, etc.) to estimate the Arrhenius parameters for each system. This study provides the estimation of a large set of rate coefficients, which gives detailed pictures of the specific copolymerization systems examined and is highly valuable to generate a comprehensive overview of the polymerization kinetics of relevant fluorinated monomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp409384g | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China. Electronic address:
Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.
Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Polyolefins and Catalysis, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
Polyvinylidene fluoride (PVDF) latex nanoparticles serve as a versatile platform for surface modification due to their role as precursors in PVDF manufacturing. However, the strong chemical stability and poor compatibility of PVDF present significant challenges for effective surface modification. To address this, we developed a method that facilitates surface modification through chain entanglement.
View Article and Find Full Text PDFCarbohydr Res
March 2025
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122, Jiangsu, China.
The synthesis of starch grafted with poly (hexafluorobutyl methacrylate) (PHFBMA) was achieved using the horseradish peroxidase (HRP)/acetophenone (ACAC) green initiating system. The modified starch was characterized through FT-IR, F NMR, XPS and EDS to confirm the successful grafting of PHFBMA onto starch backbone. The SEM analysis revealed that the introduction of PHFBMA led to a partial disruption of the crystalline structure of starch, suggesting that PHFBMA did not undergo physical adsorption onto starch.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!