Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845854 | PMC |
http://dx.doi.org/10.1155/2013/348169 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
Stevia rebaudiana is a plant native to South America known for producing steviol glycosides and fructans used in low-calorie and functional foods. This study aimed to cultivate and isolate inulin from hydroponically grown S. rebaudiana roots.
View Article and Find Full Text PDFNutr Neurosci
January 2025
Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Objectives: This review examines how food additives impact the central nervous system (CNS) focusing on the effects of sugars, artificial sweeteners, colorings, and preservatives.
Methods: A literature search of PubMed, Scopus, and Web of Science was conducted for studies published since 2010. Key search terms included, food additives, neurotoxicity, cognition, and behavior.
Food Technol Biotechnol
September 2024
Central Laboratory, School of Exact, Chemical and Life Sciences, Misiones National University, Félix de Azara 1552, 3300-Posadas, Argentina.
Research Background: The process for producing purified steviol glycosides from leaves (stevia) generally involves pretreatments, extraction, purification and crystallization. Pre-extraction or defatting can sometimes be a part of this process. It can remove impurities of low polarity, such as chlorophyll and fatty compounds.
View Article and Find Full Text PDFFood Chem
February 2025
Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India. Electronic address:
Postharvest processing plays a crucial role in harnessing the benefits of prickly pear fruit by utilizing betalain as natural colorants to replace artificial colors in model food systems. Prickly pear betalain-enriched gummies were developed using various sugar substitutes, including table sugar, xylitol, stevia, and fructo-oligosaccharides (FOS). These gummies were analyzed for in vitro enzymatic inhibition, anti-inflammatory effects and molecular docking studies for decoding diabetes type-II and skin resilience.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!