The insertion of the single-molecule magnet (SMM) [Mn(III)(salen)(H2O)]2(2+) (salen(2-) = N,N'-ethylenebis-(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [Mn(III)(salen)(H2O)]2[Mn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn(III)(salen)(H2O)]2[Zn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (2) and [In(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]⋅(H2O)0.25⋅(CH3OH)0.25⋅(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of Cr(III) affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic Mn(II) Cr(III) network is observed at Tc = 5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3. In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near-reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201303044DOI Listing

Publication Analysis

Top Keywords

oxalate network
16
insertion single-molecule
8
single-molecule magnet
8
ferromagnetic lattice
8
bimetallic oxalate
8
hybrid compound
8
magnetic properties
8
reference compounds
8
oxalate
5
network
5

Similar Publications

Synergistic transformation of Cr(VI) in lubricant degradation by bacterial consortium.

World J Microbiol Biotechnol

January 2025

Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China.

In recent years, it has become widely acknowledged that heavy metals are often present in oil-contaminated sites. This study utilized three specific types of microorganisms with different functions to construct a composite bacterial consortium for treating lubricant-Cr(VI) composite pollutants. The selected strains were Lysinbacillus fusiformis and Bacillus tropicus.

View Article and Find Full Text PDF

Synthesis of Bis(isodecyl Terephthalate) from Waste Poly(ethylene Terephthalate) Catalyzed by Lewis Acid Catalysts.

Int J Mol Sci

December 2024

Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland.

Increasing plastic waste generation has become a pressing environmental problem. One of the most produced waste plastics originates from post-consumer packaging, of which PET constitutes a significant portion. Despite increasing recycling rates, its accumulation has created a need for the development of new recycling methods that can further expand the possibilities of recycling.

View Article and Find Full Text PDF

The commencement of kidney stone formation involves a crucial initial phase characterized by injury to renal tubular cells caused by calcium oxalate (CaOx). Dioscin (Dio) has been acknowledged for its potent anti-inflammation and anti-apoptotic properties; nevertheless, the impact and underlying Investigation into the molecular basis underlying the action of Dioscin in mitigating inflammation and apoptotic induced by exposure to calcium oxalate crystals in renal tissues remain unexplored. To comprehend the precise mechanism of Dioscin in the treatment of crystalline nephropathy, we conducted experiments utilizing a murine model of CaOx crystal deposition, induced by intraperitoneal administration of glyoxylate.

View Article and Find Full Text PDF

Proteomics provides an essential means of explaining the mechanisms underlying gene expression regulation. The proteomic mechanisms by which heavy metal hyperaccumulators respond to lead (Pb) stress remain largely unclear. To this end, we examined Pogonatherum crinitum (Thunb.

View Article and Find Full Text PDF

Calcium oxalate (CaOx) nephrolithiasis constitutes approximately 75% of nephrolithiasis cases, resulting from the supersaturation and deposition of CaOx crystals in renal tissues. Despite their prevalence, precise biomarkers for CaOx nephrolithiasis are lacking. With advances in high-throughput sequencing, we aimed to identify biomarkers of CaOx nephrolithiasis by combining two CaOx nephrolithiasis datasets (GSE73680 and GSE117518).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!