Despite their importance to human genetic variation and disease, little is known about the molecular mechanisms and environmental risk factors that impact copy number variant (CNV) formation. While it is clear that replication stress can lead to de novo CNVs, for example, following treatment of cultured mammalian cells with aphidicolin (APH) and hydroxyurea (HU), the effect of different types of mutagens on CNV induction is unknown. Here we report that ionizing radiation (IR) in the range of 1.5-3.0 Gy effectively induces de novo CNV mutations in cultured normal human fibroblasts. These IR-induced CNVs are found throughout the genome, with the same hotspot regions seen after APH- and HU-induced replication stress. IR produces duplications at a higher frequency relative to deletions than do APH and HU. At most hotspots, these duplications are physically shifted from the regions typically deleted after APH or HU, suggesting different pathways involved in their formation. CNV breakpoint junctions from irradiated samples are characterized by microhomology, blunt ends, and insertions like those seen in spontaneous and APH/HU-induced CNVs and most nonrecurrent CNVs in vivo. The similarity to APH/HU-induced CNVs suggests that low-dose IR induces CNVs through a replication-dependent mechanism, as opposed to replication-independent repair of DSBs. Consistent with this mechanism, a lower yield of CNVs was observed when cells were held for 48 hr before replating after irradiation. These results predict that any environmental DNA damaging agent that impairs replication is capable of creating CNVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086151 | PMC |
http://dx.doi.org/10.1002/em.21840 | DOI Listing |
Nutrients
January 2025
Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry ( L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi 756-0884, Japan.
The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China.
Cervical cancer poses a substantial threat to women's health, underscoring the necessity for effective therapeutic agents with low toxicity that specifically target cancer cells. As cancer progresses, increased glucose consumption causes glucose scarcity in the tumor microenvironment (TME). Consequently, it is imperative to identify pharmacological agents capable of effectively killing cancer cells under conditions of low glucose availability within the TME.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel.
Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some high-copy-number components are transiently associated with almost immobile large assemblies (hyperstructures) and may be unequally distributed, contributing to bacterial phenotypic variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!