The catalyzed luminol chemiluminescent reaction has received a great amount of attention because of its high sensitivity and low background signal which make the reaction an attractive analytical chemistry tool. The present study, introduces the beneficial catalytic effects of dinuclear Cu(II) complex [Cu2L2(TAE)]X2, where TAE=tetraacetylethane; L=N,N(')-dibenzylethylenediamine and X=ClO4 on the luminol chemiluminescent reaction as a novel probe for the determination of glutathione (GSH) and L-cysteine (CySH) in human serum and urine. The [Cu2L2(TAE)]X2 has exhibited highly efficient catalytic activity of luminol CL as an artificial peroxidase model at pH as low as 7.5 in water in the presence of H2O2⋅GSH and CySH can induce a sharp decrease in CL intensity from the [Cu2L2(TAE)]X2-catalyzed luminol system. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the concentrations of GSH and CySH in the range of 1.0×10(-7)-1.0×10(-4) M, with detection limits (S/N=3) of 2.7×10(-8) and 6.8×10(-8) M and RSD<4.2% (n=7) for GSH and CySH, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2013.10.105DOI Listing

Publication Analysis

Top Keywords

luminol chemiluminescent
8
chemiluminescent reaction
8
determination cysteine
4
cysteine glutathione
4
glutathione based
4
based inhibition
4
inhibition dinuclear
4
dinuclear cuii-catalyzed
4
cuii-catalyzed luminol-h2o2
4
luminol-h2o2 chemiluminescence
4

Similar Publications

Previous research has demonstrated that a combined magnetic field (CMF) plays a critical role in modifying the properties of aqueous solutions, leading to an increase in the luminol-enhanced chemiluminescence of neutrophils. Using this model, the distant interaction between aqueous solutions was demonstrated, and the role of a CMF in the regulation of this phenomenon was established. In the current study, highly diluted (HD) phorbol myristate acetate (PMA) solution (the donor) was incubated with aqueous ethanol (the acceptor), both in a CMF-generating device and under geomagnetic field (GMF), for 0, 20, and 60 min.

View Article and Find Full Text PDF

Purposes: To explore the optimization method and application of Au-NP-enhanced luminol--HO luminescence system in TORCH (TOX, RV, CMV, HSVI, and HSVII) detection.

Method: 4.5 × 10 mmol/L gold nano solution was prepared with chloroauric acid as the reducing agent and trisodium citrate as the stabilizer.

View Article and Find Full Text PDF

An intrinsic metal cluster NIR-II emission of the {Ta6Br12}2+ aqua/hydroxocomplexes was determined in aqueous solutions under inert atmosphere. The photoluminescence (PL) is enhanced in D2O, and the lifetime scale expands from nanoseconds to microseconds. Possible cluster emission transitions have been assigned and analyzed from a computational perspective.

View Article and Find Full Text PDF

Long-lasting chemiluminescence-based portable biosensor for POCT of food contaminant azodicarbonamide.

Talanta

December 2024

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China; Dongguan University of Technology, School of Life and Health Technology, Dongguan, 523808, China. Electronic address:

Azodicarbonamide (ADA) in flour products is easily converted to semicarbazide which greatly threatens human health. Herein, a long-lasting chemiluminescence (CL)-based biosensor was developed for quantitative point-of-care testing (POCT) of ADA. The threonine (Thr)-functionalized Cu-hemin MOFs (Cu-hemin@Thr) could induce persistent CL of luminol with excellent stability.

View Article and Find Full Text PDF

Chiral Cobalt Nanocluster-Driven Chemiluminescent System for the Facile Discrimination of Carnitine Enantiomers with a Hydrogel-Assisted Strategy.

Anal Chem

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.

Facile chiral discrimination without relying on chromatographic techniques has long been a huge challenge due to the minimal differences in the physicochemical properties of enantiomers. Polysaccharide hydrogels with natural chiral selectivity can be promising materials for constructing chiral discrimination platforms. In this study, l-cysteine-induced cobalt nanoclusters (LC-CoNCs) were prepared and utilized as chiral nanozymes for promoting the chemiluminescent (CL) signal of a luminol-HO system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!