Polyelectrolyte multilayer coatings based on poly(methacrylic acid) and poly-l-histidine were formed on anodized titanium surfaces with adsorbed bone morphogenetic protein 2 (BMP-2) or basic fibroblast growth factor (FGFb). These coatings are proposed for use on titanium implanted devices. Coatings were capable of sustained release of growth factor over 25 days, with BMP-2 and FGFb exhibiting approximately identical release profiles. Cell culture on growth factor-eluting surfaces was more effective for preosteoblasts on BMP-2-eluting surfaces than for fibroblasts on FGFb-eluting surfaces. Cell counts at all time points on BMP-2-eluting surfaces were significantly higher than for those on anodized titanium or polyelectrolyte surfaces that did not contain BMP-2. Alkaline phosphatase levels were significantly higher after 21 days on BMP-2-eluting surfaces, indicating increased bone growth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am404849yDOI Listing

Publication Analysis

Top Keywords

growth factor
12
bmp-2-eluting surfaces
12
anodized titanium
8
surfaces
7
growth
5
factor release
4
release polyelectrolyte-coated
4
titanium
4
polyelectrolyte-coated titanium
4
titanium implant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!