A previous study postulated that acetate metabolism was a metabolic sensory mechanism that related information about 's environment to the formation of biofilms (Prüβ et al., Arch. Microbiol. 2010). Considering that mutants in (no acetyl phosphate) and (high acetyl phosphate) exhibited similarly increased biofilm amounts and three dimensional structures, the hypothesis for this study was that acetyl Co-A was a more likely mediator of the acetate effect than acetyl phosphate. The effect of acetate metabolism on biofilm amounts was detailed by using single carbon sources rather than the previously used mixed amino acid medium, as well as mutations in additional genes that contribute to acetate metabolism (, , ). In summary, the mutations in and increased biofilm amounts in the presence of maltose, D-trehalose, D-mannose, and L-rhamnose, all of which get converted to acetyl-CoA. The mutant also exhibited increased biofilm amounts in the presence of inosine and thymidine. The mutation in decreased biofilm amounts in the presence of maltotriose, uridine, D-serine, and acetate. Since , , and mutants are expected to exhibit increased intracellular acetyl-CoA levels, and and mutants likely exhibit decreased acetyl-CoA concentrations, we believe that acetyl-CoA is the activated acetate intermediate that controls biofilm amounts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855392PMC

Publication Analysis

Top Keywords

biofilm amounts
28
acetate metabolism
12
acetyl phosphate
12
increased biofilm
12
amounts presence
12
activated acetate
8
exhibited increased
8
acetate
7
biofilm
7
amounts
7

Similar Publications

Exploring the efficacy of drought tolerant, IAA-producing plant growth-promoting rhizobacteria for sustainable agriculture.

Plant Signal Behav

December 2025

Laboratory of Research and Teaching in Animal Health and Biotechnology, Bobo-Dioulasso, Burkina Faso.

The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics.

View Article and Find Full Text PDF

Unveiling the role of rubber seals in the generation of decentralized disinfection by-products in chlorinated water distribution systems.

Chemosphere

January 2025

University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:

The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.

View Article and Find Full Text PDF

Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems.

Water Res

December 2024

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.

View Article and Find Full Text PDF

Introduction: This paper examines the use of local antibiotic therapy in one-stage septic revision surgery for late periprosthetic joint infections (PJIs). This case study suggests that morselized bone allografts impregnated with antibiotics in powder form are a preferable alternative to polymethyl methacrylate (PMMA) because they can generate higher local antibiotic concentrations. Current research also recommends using vancomycin and aminoglycosides as the preferred choice of antibiotics, as they may have low diffusion in tissues when administered intravenously, but are effective when administered locally.

View Article and Find Full Text PDF

Background: Sporobolomyces pararoseus is a well-studied oleaginous red yeast that can synthesize a variety of high value-added bioactive compounds. Biofilm is one of the important biological barriers for microbial cells to resist environmental stresses and maintain stable fermentation process. Here, the effect of acidic conditions on the biosynthesis of biofilms in S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!