Appropriate maintenance and regeneration of adult endocrine organs is important in both normal physiology and disease. We investigated cell proliferation, movement and differentiation in the adult mouse adrenal cortex, using different 5-bromo-2'-deoxyuridine (BrdU) labelling regimens and immunostaining for phenotypic steroidogenic cell markers. Pulse-labelling showed that cell division was largely confined to the outer cortex, with most cells moving inwards towards the medulla at around 13-20 µm per day, though a distinct labelled cell population remained in the outer 10% of the cortex. Pulse-chase-labelling coupled with phenotypic immunostaining showed that, unlike cells in the inner cortex, most BrdU-positive outer cortical cells did not express steroidogenic markers, while co-staining for BrdU and Ki67 revealed that some outer cortical BrdU-positive cells were induced to proliferate following acute adrenocorticotropic hormone (ACTH) treatment. Extended pulse-chase-labelling identified cells in the outer cortex which retained BrdU label for up to 18-23 weeks. Together, these observations are consistent with the location of both slow-cycling stem/progenitor and transiently amplifying cell populations in the outer cortex. Understanding the relationships between these distinct adrenocortical cell populations will be crucial to clarify mechanisms underpinning adrenocortical maintenance and long-term adaptation to pathophysiological states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852665 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081865 | PLOS |
New Phytol
January 2025
Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico.
Along their lengths, stems experience different functional demands. Because bark and wood traits are usually studied at single points on stems, it remains unclear how carbon allocation changes along tip-to-base trajectories across species. We examined bark vs wood allocation by measuring cross-sectional areas of outer and inner bark (OB and IB), IB regions (secondary phloem, cortex, and phelloderm), and wood from stem tips to bases of 35 woody angiosperm species of diverse phylogenetic lineages, climates, fire regimes, and bark morphologies.
View Article and Find Full Text PDFBio Protoc
December 2024
Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
Brain development is highly complex and dynamic. During this process, the different brain structures acquire new components, such as the cerebral cortex, which builds up different germinal and cortical layers during its development. The genetic study of this complex structure has been commonly approached by bulk-sequencing of the entire cortex as a whole.
View Article and Find Full Text PDFFood Chem
December 2024
Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan. Electronic address:
To clarify the cause of graded distribution of sucrose in apple fruit flesh, a quarter cut of young apple fruit was cultured for 72 h on agar-solidified MS medium supplemented with 0.5 M [1-C]sorbitol, with the longitudinal or horizontal cut face being attached with the medium, and distribution of C-labelled sucrose in a specimen obtained by slicing the fruit along with the cut face was visualized utilizing MALDI-TOF MSI. Heat map images on the distribution of the peaks of sorbitol containing C-atom indicated that external [1-C]sorbitol had penetrated evenly into the tissue.
View Article and Find Full Text PDFJ Craniofac Surg
October 2024
Department of Plastic Surgery, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
High-velocity lateral impacts to the nose sometimes cause nasal buckle-out fractures with a trapdoor buckle-out segment displaced outwards. Prolonged immobilization of a reduced buckle-out segment at risk for outward redisplacement remains challenging. Here we introduce a novel method of intranasal outer cortex splinting with a Kirshner (K)-wire to reinforce the reduced state and prevent outward re-displacement of the buckle-out segment.
View Article and Find Full Text PDFKidney360
December 2024
Department of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland.
Background: Structural analysis of soft biological tissues is conventionally done with destructive 2D histology. 3D information can be accessed with non-invasive imaging methods, such as X-ray micro-computed tomography (micro-CT). While attenuation-based X-ray imaging alone does not provide reasonable contrast with soft-tissue samples, the combination with contrast-enhancing staining has proven effective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!