Background: The decline of photosynthesis in plants under low sink demand is well known. Previous studies focused on the relationship between stomatal conductance (gs) and net photosynthetic rate (Pn). These studies investigated the effect of changes in Photosystem II (PSII) function on the Pn decline under low sink demand. However, little is known about its effects on different limiting steps of electron transport chain in PSII under this condition.
Methodology/principal Finding: Two-month-old bean plants were processed by removing pods and flowers (low sink demand). On the 1(st) day after low sink demand treatment, a decline of Pn was accompanied by a decrease in gs and internal-to-ambient CO2 concentration ratio (Ci/Ca). From the 3(rd) to 9(th) day, Pn and gs declined continuously while Ci/Ca ratio remained stable in the treatment. Moreover, these values were lower than that of control. Wk (a parameter reflecting the damage to oxygen evolving complex of the donor side of PSII) values in the treatment were significantly higher than their corresponding control values. However, RCQA (a parameter reflecting the number of active RCs per excited cross-section of PSII) values in the treatment were significantly lower than control from the 5(th) day. From the 11(th) to 21(st) day, Pn and gs of the treatment continued to decline and were lower than control. This was accompanied by a decrease of RCQA, and an increase of Wk. Furthermore, the quantum yield parameters φPo, φEo and ψEo in the treatment were lower than in control; however, Ci/Ca values in the treatment gradually increased and were significantly higher than control on the 21(st) day.
Conclusions: Stomatal limitation during the early stage, whereas a combination of stomatal and non-stomatal limitation during the middle stage might be responsible for the reduction of Pn under low sink demand. Non-stomatal limitation during the late stages after the removal of the sink of roots and pods may also cause Pn reduction. The non-stomatal limitation was associated with the inhibition of PSII electron transport chain. Our data suggests that the donor side of PSII was the most sensitive to low sink demand followed by the reaction center of PSII. The acceptor side of PSII may be the least sensitive.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851463 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080770 | PLOS |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.
Subducted plates often stagnate in the mantle transition zone (MTZ), and the fate of the stagnant slabs is still debatable. They may sink into the lower mantle, or remain partially trapped in the MTZ, but it is uncertain whether they can return to the upper mantle. We report geochemical evidence of late-Miocene (~6 Ma) basalts from, and upper mantle seismic evidence beneath Shuangyashan, an area above the slab tear of the stagnant Pacific plate in eastern Asia, to show how the slab returns to the upper mantle from the MTZ.
View Article and Find Full Text PDFEpidemiol Infect
January 2025
Health Protection Operations, South West, UK Health Security Agency, Bristol, UK.
In September 2023, the UK Health Security Agency's (UKHSA) South West Health Protection Team received notification of patients with perichondritis. All five cases had attended the same cosmetic piercing studio and a multi-disciplinary outbreak control investigation was subsequently initiated. An additional five cases attending the same studio were found.
View Article and Find Full Text PDFChanges in terrestrial ecosystem carbon storage (CS) affect the global carbon cycle, thereby influencing global climate change. Land use/land cover (LULC) shifts are key drivers of CS changes, making it crucial to predict their impact on CS for low-carbon development. Most studies model future LULC by adjusting change proportions, leading to overly subjective simulations.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Numerous studies of the human brain supported by experimental results from rodent and cell models point to a central role for intracellular amyloid beta (Aβ) in the onset of Alzheimer's disease (AD). In a rat model used to study AD, it was recently shown that in layer II neurons of the anteriolateral entorhinal cortex expressing high levels of the glycoprotein reelin (Re+alECLII neurons), reelin and Aβ engage in a direct protein-protein interaction. If reelin functions as a sink for intracellular Aβ and if the binding to reelin makes Aβ physiologically inert, it implies that reelin can prevent the neuron from being exposed to the harmful effects typically associated with increased levels of oligomeric Aβ.
View Article and Find Full Text PDFBackground: Patients with arrhythmogenic cardiomyopathy (ACM) due to pathogenic variants in , the gene for the desmosomal protein plakophilin-2, are being enrolled in gene therapy trials designed to replace the defective allele via adeno-associated viral (AAV) transduction of cardiac myocytes. Evidence from experimental systems and patients indicates that ventricular myocytes in ACM have greatly reduced electrical coupling at gap junctions and reduced Na current density. In previous AAV gene therapy trials, <50% of ventricular myocytes have generally been transduced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!