AI Article Synopsis

  • The study investigates the impact of X chromosome mosaicism on spontaneous menarche in patients with Turner syndrome, finding a significant association between the two.
  • Analysis of 40 Turner syndrome patients revealed that those with spontaneous menarche had a higher percentage of the normal 46,XX chromosome lineage compared to those with primary amenorrhea.
  • Genetic and molecular-cytogenetic techniques indicated that a mosaicism of around 10% for normal cells could predict spontaneous puberty, highlighting the complexity of genetic factors in Turner syndrome's ovarian function.

Article Abstract

Study Question: What is the burden of X chromosome mosaicism in the occurrence of spontaneous menarche (SM) in Turner syndrome (TS)?

Summary Answer: SM was significantly associated with X chromosome mosaicism in the TS patients; a mosaicism with around 10% euploid cell line may predict spontaneous pubertal development when determined by molecular-cytogenetic techniques on uncultivated tissues.

What Is Known Already: Spontaneous puberty can be observed in a minority of patients with TS, more frequently, but not exclusively, in those with a high level of 46,XX/45,X mosaicism at standard karyotype. The genetic mechanisms contributing to ovarian function in TS patients are still not determined. However, submicroscopic X-linked and autosomal copy number variations (CNVs) have recently emerged as an important genetic risk category for premature ovarian insufficiency and may be involved in modulating the TS ovarian phenotype.

Study Design, Size, Duration: A group of 40 patients with a diagnosis of TS at conventional karyotyping participated in the study; 6 patients had SM and 34 patients had primary amenorrhoea (PA). All clinical data and the patients' DNA samples were collected over the years at a single paediatric clinic.

Participants/materials, Setting, Methods: The patients' samples were used to perform both genetic (Copy Number Assay) and molecular-cytogenetic (array-CGH and iFISH, interphase-FISH) analyses in order to evaluate the X chromosome mosaicism rate and to detect possible rare CNVs of genes with a known or predicted role in female fertility.

Main Results And The Role Of Chance: All TS patients showed variable percentages of the 46,XX lineage, but these percentages were higher in the SM group (P < 0.01). A mosaicism around 10% for the euploid cell line may predict spontaneous pubertal development when determined by molecular-cytogenetic techniques performed in uncultivated tissues. A few CNVs involving autosomal and X-linked ovary-related loci were identified by array-CGH analysis and confirmed by real-time quantitative PCR, including a BMP15 gene duplication at Xp11.22, a deletion interrupting the PAPPA gene at 9q33.1, and an intragenic duplication involving the PDE8A gene at 15q25.3.

Limitations, Reasons For Caution: This is a pilot study on a relatively small sample size and confirmation in larger TS cohorts may be required. The ovarian tissue could not be studied in any patients and in a subgroup of patients, the mosaicism was estimated in tissues of different embryonic origin.

Wider Implications Of The Findings: The combined determination of X chromosome mosaicism by molecular and molecular-cytogenetic techniques may become useful for the prediction of SM in TS. The detection of CNVs in both X-linked and autosomal ovary-related genes further suggests gene dosage as a relevant mechanism contributing to the ovarian phenotype of TS patients. These CNVs may pinpoint novel candidates relevant to female fertility and generate further insights into the mechanisms contributing to ovarian function.

Study Funding/competing Interest(s): This study was funded by Telethon Foundation (grant no: GGP09126 to L.P.), the Italian Ministry of the University and Research (grant number: 2006065999 to P.F.) and a Ministry of Health grant 'Ricerca Corrente' to IRCCS Istituto Auxologico Italiano (grant number: 08C704-2006). The authors have no conflict of interest to declare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896225PMC
http://dx.doi.org/10.1093/humrep/det436DOI Listing

Publication Analysis

Top Keywords

chromosome mosaicism
16
molecular-cytogenetic techniques
12
contributing ovarian
12
patients
10
gene dosage
8
dosage relevant
8
relevant mechanism
8
mechanism contributing
8
ovarian function
8
turner syndrome
8

Similar Publications

Turner syndrome is a chromosomal disorder, characterized by the partial or total deletion of one X chromosome, resulting in various karyotypes that presumably lead to different phenotypes. However, most studies find it difficult to predict phenotypes from karyotypes due to the presence of mosaicism. The purpose of this study is to clarify the relationship between karyotype and phenotype in Turner syndrome with non-mosaic X chromosome structural rearrangements.

View Article and Find Full Text PDF

The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.

View Article and Find Full Text PDF

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Advanced phasing techniques in congenital skin diseases.

J Dermatol

December 2024

Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

Phasing, the process of determining which alleles at different loci on homologous chromosomes belong together on the same chromosome, is crucial in the diagnosis and management of autosomal recessive diseases. Advances in long-read sequencing technologies have significantly enhanced our ability to accurately determine haplotypes. This review discusses the application of low-coverage long-read sequencing, nanopore Cas9-guided long-read sequencing, and adaptive sampling in phasing, highlighting their utility in complex clinical scenarios.

View Article and Find Full Text PDF

Study Question: Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data?

Summary Answer: It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity.

What Is Known Already: Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!