Comparative phenotypic characterization of Vibrio cholerae isolates collected from aquatic environments of Georgia.

Georgian Med News

G. Eliava Research Institute of Bacteriophages, Microbiology and Virology, Tbilisi; Tbilisi State Medical University, Tbilisi, Georgia; United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD; Maryland Pathogen Research Institute University of Maryland, College Park, Maryland, USA.

Published: November 2013

Vibrio cholerae is ubiquitous in aquatic environment inhabiting marine, fresh and brackish waters. V. cholerae serotypes O1 and O139 cause the devastating diarrheal disease cholera, which is often fatal without proper treatment. Little is known regarding the abundance and diversity of clinically important nonhalophilic vibrios in the South Caucasus region, particularly in Georgia. Here we provide the data on the Georgian environmental strains of V. cholerae isolated in 2006-2009 years from the coastal waters of the Black Sea and inland water reservoirs near Tbilisi. In total, 846 V. cholerae strains were collected from the water samples, most of them (705 strains) obtained from fresh water lakes. Isolation pattern of V. cholerae showed obvious seasonality with the highest isolation rates in late summer - early autumn. Twenty-nine isolates of V. cholerae were attributed to the O1 serotype based on serological studies and PCR identification and were further grouped by biochemical properties into classical and El Tor biotypes as well as hybrids. The study of antibiotic susceptibility profiles for V. cholerae isolates showed that 95% were sensitive to tetracycline, 91% to doxycycline, and 91% to ciprofloxacin. Interestingly, the freshwater isolates appeared to be more resistant to antibiotics than the Black Sea isolates. Among Black Sea isolates of V. cholerae toxigenic strains of O1 serotype revealed higher antibiotic resistance compared to non- O1/non-O139 isolates. In addition, V. cholerae O1 and non- O1/non-O139 isolates differed by phage susceptibility profiles, with higher diversity within the population of environmental non-O1/non-O139 V. cholerae isolates.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cholerae isolates
12
black sea
12
cholerae
11
isolates
9
vibrio cholerae
8
isolates cholerae
8
susceptibility profiles
8
sea isolates
8
non- o1/non-o139
8
o1/non-o139 isolates
8

Similar Publications

Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.

View Article and Find Full Text PDF

Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).

View Article and Find Full Text PDF

Marine mucilage disasters, primarily caused by global warming and marine pollution, threaten food security and the sustainability of marine food resources. This study assessed the microbial risks to public health in common sole, deep-water rose shrimp, European anchovy, Atlantic horse mackerel and Mediterranean mussel following the mucilage disaster in the Sea of Marmara in 2021. The total viable count, total Enterobacteriaceae count and the presence of Escherichia coli O157:H7, Salmonella spp.

View Article and Find Full Text PDF

Zambia experienced the largest cholera epidemic in the country's history in 2023-2024; however, the antimicrobial susceptibility profile of Vibrio cholerae during the epidemic is unknown. A total of 2,384 stool samples were collected from suspected cholera cases in Eastern, Lusaka, and Luapula provinces in Zambia from January 2023 to March 2024. Among them, 549 (23.

View Article and Find Full Text PDF

Non-O1/non-O139 (NOVC) strains inhabit aquatic environments and sporadically induce human illnesses. This study involved the virulence and antimicrobial genetic characterization of 176 NOVC strains, comprising 25 from clinical samples and 151 from environmental sources, collected between 2021 and 2023. The antimicrobial susceptibility of the examined NOVC population was predominantly high, exhibiting only poor susceptibility to colistin, with 89.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!