AI Article Synopsis

Article Abstract

G-protein coupled receptor 119 (GPR119) is emerging as a potential target for the treatment of type 2 diabetes with beneficial effects on glucose homeostasis. This study assessed the insulin-secreting properties of various GPR119 agonists and the distribution of GPR119 in pancreatic islets. Endogenous ligands [oleoylethanolamide (OEA), palmitoylethanolamine (PEA)] and chemically synthetic analogues (AS-1269574, PSN-375963) were investigated in clonal BRIN-BD11 cells and mouse pancreatic islets. Secondary messenger assays such as intracellular Ca²⁺ and cAMP in response to agonists at normoglycaemic and hyperglycaemic conditions were assessed. Cytotoxicity was assessed by LDH release. AS-1269574 was the most potent and selective agonist tested in isolated islets, with an EC₅₀ value of 9.7×10⁻⁷ mol/l, enhancing insulin release maximally by 63.2%. Stimulation was also observed with GPR119 ligands; OEA (3.0×10⁻⁶ mol/l; 37.5%), PSN-375963 (2.4×10⁻⁶ mol/l; 28.7%) and PEA (1.2×10⁻⁶ mol/l; 22.2%). Results were corroborated by studies using BRIN-BD11 cells, which revealed augmentation of intracellular Ca²⁺ and cAMP. Both OEA and AS-1269574 enhanced insulin release and improved glucose tolerance in vivo in NIH Swiss mice. These results demonstrate the cellular localisation of GPR119 on islet cells (β and pancreatic polypeptide cells), its activation of the β-cell stimulus-secretion coupling pathway and glucose lowering effects in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2013-0255DOI Listing

Publication Analysis

Top Keywords

insulin release
12
pancreatic islets
12
glucose tolerance
8
brin-bd11 cells
8
intracellular ca²⁺
8
ca²⁺ camp
8
gpr119
5
activation gpr119
4
gpr119 fatty
4
fatty acid
4

Similar Publications

Clinical studies of blood-borne Extracellular vesicles in psychiatry: A systematic review.

J Psychiatr Res

January 2025

Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.

Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

Saturated fatty acid (SFA) accumulation in liver decreases hepatocyte lipophagy, a type of selective autophagy that degrades intracellular lipid droplets, leading to hepatic insulin resistance (IR), which contributes to simultaneous increases in liver glucose production and fat synthesis, resulting in hyperglycemia and dyslipidemia traits of type 2 diabetes mellitus (T2DM). Stromal cell derived factor-1 (SDF-1), a cytokine produced by hepatocytes, inhibits autophagy. In this study, we evaluated the hypothesis that SDF-1 promoted hepatic IR via inhibiting hepatocyte lipophagy during T2DM.

View Article and Find Full Text PDF

Introduction: The incidence of adhesive capsulitis (AC) is higher in patients with diabetes mellitus. While AC is usually treated non-operatively, diabetic patients are more likely to require more extensive treatments such as manipulation under anesthesia (MUA) or arthroscopic capsular release. Despite the recent surge in popularity of GLP-1 agonists ("GLP-1s") for the treatment of type 2 diabetes (T2DM), there is a lack of literature describing the effect of GLP-1 use on the incidence and management of AC in patients with T2DM.

View Article and Find Full Text PDF

Aim: Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.

Methods: Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!