Evaluation of biocompatibility and degradation of chitosan nanofiber membrane crosslinked with genipin.

J Biomed Mater Res B Appl Biomater

Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, Tennessee.

Published: July 2014

Chitosan, a natural polysaccharide, has demonstrated potential as a degradable biocompatible guided bone regeneration membrane. This study aimed to evaluate the in vivo biocompatibility and degradation of chitosan nanofiber membranes, with and without genipin crosslinking as compared with a commercial collagen membrane in rat model. Chitosan nanofiber membranes, with and without genipin crosslinking, and collagen membrane (control) were implanted subcutaneously in the backs of 30 rats. The membranes were analyzed histologically at 2, 4, 8, 12, 16, and 20 weeks. Sections were viewed and graded by a blinded pathologist using a 4-point scoring system (0 = absent, 1 = mild, 2 = moderate, and 3 = severe) to determine the tissue reaction to the membranes and to observe membrane degradation. There was no statistically significant difference in histological scores among chitosan and collagen membranes at different time points. Absence or minimal inflammation was observed in 57-74% of the membranes across all groups. Most chitosan membranes persisted for 16-20 weeks, whereas most collagen membranes disappeared by resorption at 12-16 weeks. The general tissue response to chitosan nanofiber membranes with and without genipin crosslinking, was similar to that of control commercial collagen membrane. However, the chitosan membranes exhibited slower degradation rates than collagen membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.33090DOI Listing

Publication Analysis

Top Keywords

chitosan nanofiber
16
nanofiber membranes
12
membranes genipin
12
genipin crosslinking
12
collagen membrane
12
collagen membranes
12
membranes
11
biocompatibility degradation
8
chitosan
8
degradation chitosan
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!