The SABRE (Systematic consolidation of Arabidopsis and other Botanical REsources) database cross-searches plant genetic resources through publicly available Arabidopsis information. In SABRE, plant expressed sequence tag (EST)/cDNA clones are related to TAIR (The Arabidoposis Information Resource) gene models and their annotations through sequence similarity. By entering a keyword, SABRE searches and retrieves TAIR gene models and annotations, together with homologous gene clones from various plant species. SABRE thus facilitates using TAIR annotations of Arabidopsis genes for research on homologous genes from other model plants. To expand the application range of SABRE to crop breeding, we have recently upgraded SABRE to SABRE2 (http://sabre.epd.brc.riken.jp/SABRE2.html), by newly adding six model plants (including the major crops barley, soybean, tomato and wheat), and by improving the retrieval interface. The present version has integrated information on >1.5 million plant EST/cDNA clones from the National BioResource Project (NBRP) of Japan. All clones are actual experimental resources from 14 plant species (Arabidoposis, barley, cassava, Chinese cabbage, lotus, morning glory, poplar, Physcomitrella patens, Striga hermonthica, soybean, Thellungiella halophila, tobacco, tomato and wheat), and are available from the core facilities of the NBRP. SABRE2 is thus a useful tool that can contribute towards the improvement of important crop breeds by connecting basic research and crop breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pct177DOI Listing

Publication Analysis

Top Keywords

arabidopsis sabre
8
est/cdna clones
8
gene models
8
models annotations
8
plant species
8
model plants
8
crop breeding
8
tomato wheat
8
plant
6
sabre
6

Similar Publications

The cellulose- and pectin-rich plant cell wall defines cell structure, mediates defense against pathogens, and facilitates plant cell adhesion. An adhesion mutant screen of Arabidopsis hypocotyls identified a new allele of (), a gene required for pectin accumulation and whose mutants have reduced pectin content and adhesion defects. A suppressor of was also isolated and describes a null allele of (, which encodes a previously described plasma membrane protein required for longitudinal cellular expansion that organizes the tubulin cytoskeleton.

View Article and Find Full Text PDF

SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.

Physiol Plant

March 2015

Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-90187, Sweden.

Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells.

View Article and Find Full Text PDF

The SABRE (Systematic consolidation of Arabidopsis and other Botanical REsources) database cross-searches plant genetic resources through publicly available Arabidopsis information. In SABRE, plant expressed sequence tag (EST)/cDNA clones are related to TAIR (The Arabidoposis Information Resource) gene models and their annotations through sequence similarity. By entering a keyword, SABRE searches and retrieves TAIR gene models and annotations, together with homologous gene clones from various plant species.

View Article and Find Full Text PDF

The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity.

View Article and Find Full Text PDF

HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling.

J Exp Bot

July 2012

MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.

The phytohormone ethylene plays important roles in regulating plant responses to phosphate (Pi) starvation. To date, however, no molecular components have been identified that interact with ethylene signalling in regulating such responses. In this work, an Arabidopsis mutant, hps4, was characterized that exhibits enhanced responses to Pi starvation, including increased inhibition of primary root growth, enhanced expression of Pi starvation-induced genes, and overproduction of root-associated acid phosphatases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!