It is well known that increased spring temperatures cause earlier onset dates of leaf unfolding and flowering. However, a temperature increase in winter may be associated with delayed development when species' chilling requirements are not fulfilled. Furthermore, photosensitivity is supposed to interfere with temperature triggers. To date, neither the relative importance nor possible interactions of these three factors have been elucidated. In this study, we present a multispecies climate chamber experiment to test the effects of chilling and photoperiod on the spring phenology of 36 woody species. Several hypotheses regarding their variation with species traits (successional strategy, floristic status, climate of their native range) were tested. Long photoperiods advanced budburst for one-third of the studied species, but magnitudes of these effects were generally minor. In contrast to prior hypotheses, photosensitive responses were not restricted to climax or oceanic species. Increased chilling length advanced budburst for almost all species; its effect greatly exceeding that of photoperiod. Moreover, we suggest that photosensitivity and chilling effects have to be rigorously disentangled, as the response to photoperiod was restricted to individuals that had not been fully chilled. The results indicate that temperature requirements and successional strategy are linked, with climax species having higher chilling and forcing requirements than pioneer species. Temperature requirements of invasive species closely matched those of native species, suggesting that high phenological concordance is a prerequisite for successful establishment. Lack of chilling not only led to a considerable delay in budburst but also caused substantial changes in the chronological order of species' budburst. The results reveal that increased winter temperatures might impact forest ecosystems more than formerly assumed. Species with lower chilling requirements, such as pioneer or invasive species, might profit from warming winters, if late spring frost events would in parallel occur earlier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.12360 | DOI Listing |
Viruses
December 2024
Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA.
Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver.
View Article and Find Full Text PDFViruses
December 2024
Foundation Plant Services, University of California-Davis, Davis, CA 95616, USA.
Among the cultivated crop species, the economically and culturally important grapevine plays host to the greatest number of distinctly characterized viruses. A critical component of the management and containment of these viral diseases in grapevine is both the identification of infected vines and the characterization of new pathogens. Next-generation high-throughput sequencing technologies, i.
View Article and Find Full Text PDFViruses
December 2024
HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary.
To address a gap in our understanding of viral infections in epidemiologically important rat species, we aimed to detect DNA viruses from the tissues of free-ranging rat populations in Hungary. DNA viruses were identified from the parenchymal organs of 230 and , using family-specific pan-PCR assays followed by sequencing of the PCR products. Adeno-, herpes-, circo-, and polyomaviruses were detected, while irido-, pox-, and dependoparvoviruses were not.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine.
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.
View Article and Find Full Text PDFRhinoviruses and respiratory enteroviruses remain among the leading causes of acute respiratory infections, particularly in children. Little is known about the genetic diversity of enteroviruses and rhinoviruses in pediatric patients with acute respiratory infections in Russia. We assessed the prevalence of human rhinoviruses/enteroviruses (HRV/EV) in 1992 children aged 0 to 17 years hospitalized with acute respiratory infections during the 2023-2024 epidemic season using PCR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!