The failure of traditional protein-based vaccines to prevent infection by viruses such as HIV or hepatitis C highlights the need for novel vaccine strategies. DNA vaccines have shown promise in small animal models, and are effective at generating anti-viral T cell-mediated immune responses; however, they have proved to be poorly immunogenic in clinical trials. We propose that the induction of necrosis will enhance the immune response to vaccine antigens encoded by DNA vaccines, as necrotic cells are known to release a range of intracellular factors that lead to dendritic cell (DC) activation and enhanced cross-presentation of antigen. Here we provide evidence that induction of cell death in DNA vaccine-targeted cells provides an adjuvant effect following intradermal vaccination of mice; however, this enhancement of the immune response is dependent on both the mechanism and timing of cell death after antigen expression. We report that a DNA vaccine encoding the cytolytic protein, perforin, resulted in DC activation, enhanced broad and multifunctional CD8 T-cell responses to the HIV-1 antigen GAG and reduced viral load following challenge with a chimeric virus, EcoHIV, compared with the canonical GAG DNA vaccine. This effect was not observed for a DNA vaccine encoding an apoptosis-inducing toxin, DTa, or when the level of perforin expression was increased to induce cell death sooner after vaccination. Thus, inducing lytic cell death following a threshold level of expression of a viral antigen can improve the immunogenicity of DNA vaccines, whereas apoptotic cell death has an inhibitory effect on the immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/icb.2013.93 | DOI Listing |
Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFVet Res Forum
November 2024
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Geriatrics, Peking University Third Hospital, Beijing 100191, PR China.
Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.
Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.
Acta Pharm Sin B
December 2024
Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!