The grass species Brachypodium distachyon has emerged as a model system for the study of gene structure and function in temperate cereals. As a first demonstration of the utility of Brachypodium to study wheat gene promoter function, we transformed it with a T-DNA that included the uidA reporter gene under control of a wheat High-Molecular-Weight Glutenin Subunit (HMW-GS) gene promoter and transcription terminator. For comparison, the same expression cassette was introduced into wheat by biolistics. Histochemical staining for β-glucuronidase (GUS) activity showed that the wheat promoter was highly expressed in the endosperms of all the seeds of Brachypodium and wheat homozygous plants. It was not active in any other tissue of transgenic wheat, but showed variable and sporadic activity in a minority of styles of the pistils of four homozygous transgenic Brachypodium lines. The ease of obtaining transgenic Brachypodium plants and the overall faithfulness of expression of the wheat HMW-GS promoter in those plants make it likely that this model system can be used for studies of other promoters from cereal crop species that are difficult to transform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033164PMC
http://dx.doi.org/10.4161/gmcr.27371DOI Listing

Publication Analysis

Top Keywords

gene promoter
12
wheat
8
brachypodium distachyon
8
model system
8
transgenic brachypodium
8
brachypodium
6
gene
5
promoter
5
wheat hmw-glutenin
4
hmw-glutenin 1dy10
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!