Gene transfection is an important technology for various biological applications. The exogenous DNA is commonly delivered into cells by using a strong electrical field to form transient pores in cellular membranes. However, the high voltage required in this electroporation process may cause cell damage. In this study, a dielectrophoretically-assisted electroporation was developed by using light-activated virtual microelectrodes in a new microfluidic platform. The DNA electrotransfection used a low applied voltage and an alternating current to enable electroporation and transfection. Single or triple fluorescence-carrying plasmids were effectively transfected into various types of mammalian cells, and the fluorescent proteins were successfully expressed in live transfected cells. Moreover, the multi-triangle optical pattern that was projected onto a photoconductive layer to generate localized non-uniform virtual electric fields was found to have high transfection efficiency. The developed dielectrophoretically-assisted electroporation platform may provide a simpler system for gene transfection and could be widely applied in many biotechnological fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3lc51102b | DOI Listing |
Lab Chip
February 2014
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
Gene transfection is an important technology for various biological applications. The exogenous DNA is commonly delivered into cells by using a strong electrical field to form transient pores in cellular membranes. However, the high voltage required in this electroporation process may cause cell damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!