Exome sequencing and diffusion tensor imaging in developmental disabilities.

Pediatr Res

1] Department of Pediatrics, Wayne State University, Detroit, Michigan [2] Department of Neurology, Wayne State University, Detroit, Michigan [3] PET Center, Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan.

Published: March 2014

AI Article Synopsis

  • The study found that patients with intellectual and developmental disabilities (IDD) often have a poorly developed arcuate fasciculus, confirmed by diffusion tensor imaging (DTI).
  • Researchers analyzed the genetic makeup of 18 children with IDD through exome sequencing, focusing on candidate genes linked to brain development.
  • They discovered multiple novel variants in genes associated with brain morphology and axon guidance, suggesting new genetic factors that contribute to IDD.

Article Abstract

Background: We had previously shown that arcuate fasciculus is poorly developed in patients with intellectual and developmental disabilities (IDD) using diffusion tensor imaging (DTI). In the present study, we used exome sequencing to identify the candidate variants in IDD patients with and without DTI abnormalities.

Methods: Eighteen children with IDD (age: 67 ± 36 mo, 9 females) were included in the present study. The DTI was used to determine the integrity of arcuate fasciculus. The next-generation sequencing was performed on the Solid 4 platform. A novel, analytical strategy was developed to identify a set of candidate genes of interest. We then searched for novel, nonsynonymous variants in the patients within this subset of genes and in known IDD genes.

Results: Seven novel, nonsynonymous (all of them were heterozygous, missense) variants belonged to ultraconserved genes that are known to cause abnormal brain morphology in mutant mice. Similarly, three novel, nonsynonymous (all of them were heterozygous, missense) variants belonged to known IDD genes. Two patients with underdeveloped arcuate fasciculus had novel, nonsynonymous variants in genes (MID1 and EN2) regulating axon guidance pathway.

Conclusion: Exome sequencing identified several new genetic causes of IDD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943710PMC
http://dx.doi.org/10.1038/pr.2013.234DOI Listing

Publication Analysis

Top Keywords

novel nonsynonymous
16
exome sequencing
12
arcuate fasciculus
12
diffusion tensor
8
tensor imaging
8
developmental disabilities
8
nonsynonymous variants
8
nonsynonymous heterozygous
8
heterozygous missense
8
missense variants
8

Similar Publications

Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.

View Article and Find Full Text PDF

Jakun, a Proto-Malay subtribe from Peninsular Malaysia, is believed to have inhabited the Malay Archipelago during the period of agricultural expansion approximately 4 thousand years ago (kya). However, their genetic structure and population history remain inconclusive. In this study, we report the genome structure of a Jakun female, based on whole-genome sequencing, which yielded an average coverage of 35.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.

View Article and Find Full Text PDF

With advances in long-read sequencing and assembly techniques, haplotype-resolved (phased) genome assemblies are becoming more common, also in the field of plant genomics. Computational tools to effectively explore these phased genomes, particularly for polyploid genomes, are currently limited. Here we describe a new strategy adopting a pangenome approach.

View Article and Find Full Text PDF

Analysis of genome-scale evolution has been difficult in large, endangered animals because opportunities to collect high-quality genetic samples are limited. There is a need for novel field-friendly, cost-effective genetic techniques. This study conducted an exome-wide analysis of a total of 42 chimpanzees (Pan troglodytes) across six African regions, providing insights into population discrimination techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!