For a two-dimensional quasi-stadium laser diode, we demonstrate stable excitation of the lowest-order transverse ring modes by optimally designing the confocal end mirrors of the laser cavity based on extended Fox-Li mode calculations. We observe kink-free light output versus injection current characteristics and highly directional single-peak emissions corresponding to the diamond-shaped trajectory in the cavity. These results provide convincing evidence for selective excitation of the lowest-order transverse modes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.38.004158DOI Listing

Publication Analysis

Top Keywords

excitation lowest-order
12
lowest-order transverse
12
selective excitation
8
transverse ring
8
ring modes
8
quasi-stadium laser
8
laser diode
8
modes quasi-stadium
4
diode two-dimensional
4
two-dimensional quasi-stadium
4

Similar Publications

This paper examines the circumstances under which a one-degree-of-freedom approximate system can be employed to predict the dynamics of a cantilever beam comprising an elastic element with a significant mass and a concentrated mass embedded at its end, impacting a moving rigid base. A reference model of the system was constructed using the finite element method, and an approximate lowest-order model was proposed that could be useful in engineering practice for rapidly ascertaining the dynamics of the system, particularly for predicting both periodic and chaotic motions. The number of finite elements in the reference model was determined based on the calculated values of natural frequencies, which were found to correspond to the values of natural frequencies derived from the application of analytical formulas.

View Article and Find Full Text PDF

Self-consistent approach to the dynamics of excitation energy transfer in multichromophoric systems.

J Chem Phys

November 2024

Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic.

Article Synopsis
  • Researchers have developed approximate methods to study exciton transport in molecular aggregates influenced by structured environments, moving beyond basic models that often become complex and hard to manage.
  • They introduced a self-consistent Born approximation to better accommodate exciton-environment interactions and improve calculations of energy transfer dynamics in these systems.
  • Their findings indicate that this new approach aligns well with more comprehensive models across various conditions, suggesting it effectively describes exciton behavior even in complex scenarios like the Fenna-Matthews-Olson complex.
View Article and Find Full Text PDF

Two-dimensional coherent terahertz spectroscopy (2DCS) emerges as a valuable tool to probe the nature, couplings, and lifetimes of excitations in quantum materials. It thus promises to identify unique signatures of spin liquid states in quantum magnets by directly probing properties of their exotic fractionalized excitations. Here, we calculate the second-order 2DCS of the Kitaev honeycomb model and demonstrate that distinct spin liquid fingerprints appear already in this lowest-order nonlinear response χ_{yzx}^{(2)}(ω_{1},ω_{2}) when using crossed light polarizations.

View Article and Find Full Text PDF

Internal and External Pipe Defect Characterization via High-Frequency Lamb Waves Generated by Unidirectional EMAT.

Sensors (Basel)

October 2023

Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China.

Periodic permanent magnet(PPM) electromagnetic acoustic transducers (EMATs) are commonly employed for axial defect inspection in pipelines. However, the lowest-order shear horizontal waves (SH0) guided waves have difficulties in distinctly differentiating internal and external defects. To enhance the signal-to-noise ratio and resolution, a unidirectional electromagnetic acoustic transducer (EMAT) based on Circumferential Lamb waves (CLamb waves) is developed.

View Article and Find Full Text PDF

A simple model for the friction experienced by the one-dimensional water chains that flow through subnanometer diameter carbon nanotubes is studied. The model is based on a lowest order perturbation theory treatment of the friction experienced by the water chains due to the excitation of phonon and electron excitations in both the nanotube and the water chain, as a result of the motion of the chain. On the basis of this model, we are able to demonstrate how the observed flow velocities of water chains through carbon nanotubes of the order of several centimeters per second can be accounted for.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!