Liquid chromatography and ion trap mass spectrometry for simultaneous and multiclass analysis of antimicrobial residues in feed water.

J Chromatogr B Analyt Technol Biomed Life Sci

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Innovation in Drug Design and Discovery, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand. Electronic address:

Published: January 2014

This work firstly reported the development of liquid chromatography coupled to an ion trap mass spectrometer (LC-MS ion trap) for the simultaneous determination of nitrofurans (e.g. nitrofurazone (NFZ), nitrofurantoin (NFT), furazolidone (FZD) and furaltadone (FTD)), nitroimidazoles (e.g. metronidazole (MNZ), ronidazole (RNZ) and dimetridazole (DMZ)) and chloramphenicol (CAP) in feed water. Isotope-labeled internal standards for the corresponding target analytes were employed to prevent matrix effects that might lead to signal suppression/enhancement. High performance liquid chromatography (HPLC) analysis was performed on a Prodigy ODS-3 column, 2.0mm×150mm, 5μm with a guard cartridge at a flow rate of 0.2mL/min, column oven temperature of 40°C, and an injection volume of 10μL. Solid phase extraction (SPE) procedures, factors affecting HPLC separation (e.g. buffer pH and concentrations) and mass spectrometry (MS) parameters were optimized. After an off-line SPE by the OASIS HLB cartridges (with an enrichment factor of 400), the eight antimicrobial agents were separated in 18min using a gradient elution of acetonitrile in acidified water (pH 5.0). MS detection was by an ion trap MS coupled with electrospray ionization (ESI) in tandem mass spectrometry mode (MS/MS) using the nebulizer gas at 35psi, drying gas at 9L/min and drying temperature of 325°C. Method linearity was good (r(2)=0.979-0.999) with acceptable precision (% RSDs=3.4-26.6%) and accuracy (%recovery=88.4-110.1%). Very low limits of detection (LOD) and quantitation (LOQ) were achieved in ranges of 0.002-0.06μg/L and 0.005-0.25μg/L, respectively. The established method is successfully employed by the Department of Livestock Development of Thailand for the monitoring of the drug residues in feed waterbecause of its convenience, reliability and high sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2013.11.034DOI Listing

Publication Analysis

Top Keywords

ion trap
16
liquid chromatography
12
mass spectrometry
12
trap mass
8
residues feed
8
feed water
8
ion
4
chromatography ion
4
trap
4
mass
4

Similar Publications

The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.

View Article and Find Full Text PDF

Miniaturized mass spectrometers offer significant potential for in situ analysis due to their high specificity and portability. In traditional data-dependent acquisition (DDA) mode, precursor ions for tandem analysis are selected based on the full-scan mass spectrum. However, in situ applications often require the direct analysis of complex samples without extensive sample pretreatment, making them susceptible to chemical noise that can result in false negatives.

View Article and Find Full Text PDF

To evade legal controls, new psychoactive substances (NPS), which have been designed as substitutes for traditional and synthetic drugs, are gradually dominating the drug market. Synthetic cannabinoids (SCs), which account for the majority of NPS, are rapidly being derivatized; consequently, controlling increasing abuse by merely listing individual compounds is difficult. Therefore, China has included the entire SC category of SCs listed as legal controlled substances since July 1, 2021.

View Article and Find Full Text PDF

Efficient capture of TcO/ReO via node and linker bifunctional anion exchange covalent organic frameworks.

J Hazard Mater

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China. Electronic address:

In nuclear wastewater treatment, ion-scavenging materials designed to trap TcO is urgently needed. However, strong acid/base, high radiation and high salt concentration of nuclear wastewater usually result in inadequate stability and adsorption capacity of the adsorbent. Herein, we report a new class of bifunctional anion-exchange olefin-linked COF (BPDC-MTMP) prepared via Knoevenagel condensation reactions, the first example exploring the synergistic integration of positively charged fragments at both nodes and linkers.

View Article and Find Full Text PDF

The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38b; cKO), we investigated how the ion imbalance affects the osteogenetic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!