A novel quaternized chitosan-melamine-glutaraldehyde resin for the removal of nitrate and phosphate anions.

Int J Biol Macromol

Department of Chemistry, The Gandhigram Rural Institute-Deemed University, Gandhigram, Dindigul 624 302, Tamil Nadu, India. Electronic address:

Published: March 2014

A terpolymer of chitosan-melamine-glutaraldehyde was prepared for the first time and it was quaternized with glycidyl trimethyl ammonium chloride (GTMAC). The quaternized chitosan-melamine-glutaraldehyde resin (QCMGR) was found to be effective for the removal of nitrate and phosphate oxyanions. The resin was characterised with FTIR, SEM, EDAX, TGA, DTA, XRD and water regain property. Batch method was followed to optimise the conditions for the removal of nitrate and phosphate. Chemical kinetics of the adsorption was well fitted by pseudo-second order and particle diffusion models and the adsorption process followed the Freundlich isotherm model well. The nitrate and phosphate adsorption capacity of QCMGR from 1000 mg/L respective solutions were 97.5 and 112.5mg/g, respectively. Nitrate and phosphate anions adsorbed effectively on QCMGR by replacing Cl(-) ions at the quaternary ammonium group by exchange mechanism. Even after 10th regeneration cycle the adsorbent fully retained its adsorption efficiency. Nitrate and phosphate removal efficiency of QCMGR was also tested by column method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2013.11.036DOI Listing

Publication Analysis

Top Keywords

nitrate phosphate
24
removal nitrate
12
quaternized chitosan-melamine-glutaraldehyde
8
chitosan-melamine-glutaraldehyde resin
8
phosphate anions
8
nitrate
6
phosphate
6
novel quaternized
4
removal
4
resin removal
4

Similar Publications

Cyanobacterial phycoremediation: a sustainable approach to dairy wastewater management.

Environ Technol

January 2025

Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.

The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.

View Article and Find Full Text PDF

Regulating potato tuber dormancy is crucial for crop productivity and food security. We conducted the first comprehensive physiological, transcriptomic, and metabolomic investigations of two varieties of long and short dormant potato tubers in order to clarify the mechanisms of dormancy release. In the current study, three different dormant stages of UGT (ungerminated tubers), MGT (minimally germinated tubers), and GT (germinated tubers) were obtained by treatment with the germination promoter gibberellin A and the germination inhibitor chlorpropham.

View Article and Find Full Text PDF

The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.

View Article and Find Full Text PDF

U32 is an industrial strain capable of producing therapeutically useful rifamycin SV. In early days of fermentation studies, nitrate was found to increase the yield of rifamycin along with globally, affecting both carbon and nitrogen metabolism in favor of antibiotic biosynthesis; thus, the (NSE) hypothesis was proposed. Although GlnR is likely the master regulator of the pleotropic effect of NSE, the global metabolism affected by NSE has never been systematically examined.

View Article and Find Full Text PDF

The regulatory mechanism controlling nitrification inhibitors-induced mitigation of nitrification and NO-N leaching in alkaline purple soil.

J Environ Manage

January 2025

College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing, 400716, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, China.

Nitrification inhibitors (NIs) are critical to reduce nitrogen (N) leaching losses. However, the efficacy of different NIs can be highly variable across soils and crop types, and a deeper understanding of the mechanistic basis of this efficiency variation, especially in purple soil under vegetable production, is lacking. To enrich this knowledge gap, the impact of different NIs amendment (3,4-dimethylpyrazole phosphate, DMPP; dicyandiamide, DCD; nitrapyrin, NP) on nitrification and the microbial mechanistic basis of controlling nitrate (NO-N) leaching of vegetable purple soil was explored in southwest China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!