Subjects performed Sternberg-type memory recognition tasks (Sternberg paradigm) in four experiments. Category-instance names were used as learning and testing materials. Sternberg's original experiments demonstrated a linear relation between reaction time (RT) and memory-set size (MSS). A few later studies found no relation, and other studies found a nonlinear relation (logarithmic) between the two variables. These deviations were used as evidence undermining Sternberg's serial scan theory. This study identified two confounding variables in the fixed-set procedure of the paradigm (where multiple probes are presented at test for a learned memory set) that could generate a MSS RT function that was either flat or logarithmic rather than linearly increasing. These two confounding variables were task-switching cost and repetition priming. The former factor worked against smaller memory sets and in favour of larger sets whereas the latter factor worked in the opposite way. Results demonstrated that a null or a logarithmic RT-to-MSS relation could be the artefact of the combined effects of these two variables. The Sternberg paradigm has been used widely in memory research, and a thorough understanding of the subtle methodological pitfalls is crucial. It is suggested that a varied-set procedure (where only one probe is presented at test for a learned memory set) is a more contamination-free procedure for measuring the MSS effects, and that if a fixed-set procedure is used, it is worthwhile examining the RT function of the very first trials across the MSSs, which are presumably relatively free of contamination by the subsequent trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17470218.2013.873064 | DOI Listing |
Neuropsychologia
November 2024
Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, 106308, Taiwan; Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, 106308, Taiwan. Electronic address:
Alpha oscillations are proposed to serve the function of inhibition to protect items in working memory from intruding information. In a modified Sternberg paradigm, alpha power was initially found to increase at the anticipation of strong compared to weak distractors, reflecting the active gating of distracting information from interfering with the memory trace. However, there was a lack of evidence supporting the inhibition account of alpha oscillations in later studies using similar experimental design with greater temporal disparity between the encoding phase and the presentation of the distractors.
View Article and Find Full Text PDFBr J Haematol
November 2024
Pediatric Hematology Unit, Emek Medical Center, Afula, Israel.
This study evaluates the neurocognitive and electrophysiological effects of 1-year memantine treatment in 14 adolescents and young adults (mean age 24 years) with sickle cell disease (SCD, incluing sickle cell anaemia and sickle cell β-thalassemia), hypothesizing improvements in cognitive functions and neural processing. Participants underwent assessments using subtests from the Wechsler Intelligence Scale and a computerized task-switching paradigm with concurrent event-related potential (ERP) recordings, both before and after the treatment period. Assessments focused on processing speed, working memory, attention and executive function.
View Article and Find Full Text PDFScience
October 2024
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Defense-associated reverse transcriptase (DRT) systems perform DNA synthesis to protect bacteria against viral infection, but the identities and functions of their DNA products remain largely unknown. We show that DRT2 systems encode an unprecedented immune pathway that involves de novo gene synthesis through rolling circle reverse transcription of a noncoding RNA (ncRNA). Programmed template jumping on the ncRNA generates a concatemeric cDNA, which becomes double-stranded upon viral infection.
View Article and Find Full Text PDFJ Intell
July 2024
Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
Technology alters both perceptions of human intelligence and creativity and the actual processes of intelligence and creativity. Skills that were once important for human intelligence, for example, computational ones, no longer hold anywhere near the same importance they did before the age of computers. The advantage of computers is that they may lead us to focus on what we believe to be more important things than what they have replaced.
View Article and Find Full Text PDFbioRxiv
May 2024
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Bacteria defend themselves from viral infection using diverse immune systems, many of which sense and target foreign nucleic acids. Defense-associated reverse transcriptase (DRT) systems provide an intriguing counterpoint to this immune strategy by instead leveraging DNA synthesis, but the identities and functions of their DNA products remain largely unknown. Here we show that DRT2 systems execute an unprecedented immunity mechanism that involves de novo gene synthesis via rolling-circle reverse transcription of a non-coding RNA (ncRNA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!