Me-β-cyclodextrin (Me-βCD) and HP-β-cyclodextrin (HP-βCD) inclusion complexes with isoniazid (INH) were prepared with the aim of modulating the physicochemical and biopharmaceutical properties of the guest molecule, a well-known antibuberculosis drug. The architectures of the complexes were initially proposed according to NMR data Job plot and ROESY followed by density functional theory (DFT) calculations of (1)H NMR spectra using the PBE1PBE functional and 6-31G(d,p) basis set, including the water solvent effect with the polarizable continuum model (PCM), for various inclusion modes, providing support for the experimental proposal. An analysis of the (1)H NMR chemical shift values for the isoniazid (H6',8' and H5',9') and cyclodextrins (H3,5) C(1)H hydrogens, which are known to be very adequately described by the DFT methodology, revealed them to be extremely useful, promptly confirming the inclusion complex formation. An included mode which describes Me-βCD partially enclosing the hydrazide group of the INH is predicted as the most favorable supramolecular structure that can be used to explain the physicochemical properties of the encapsulated drug. Antibacterial activity was also evaluated, and the results indicated the inclusion complexes are a potential strategy for tuberculosis treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp409579m | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Amsterdam Van 't Hoff Institute for Molecular Sciences: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences, HIMS, NETHERLANDS, KINGDOM OF THE.
The complexity of allosteric enzymatic regulation continues to inspire synthetic chemists seeking to emulate interconnected biological systems. In this work, a Pt2L4 cage capable of catalyzing the cyclization reaction of an alkynoic tosyl amide is orthogonally coupled to a diacid-catalyzed carbodiimide-hydration cycle. This new Pt-catalyzed cyclization reaction is demonstrated to exhibit electronic regulation by inclusion of different guest effectors.
View Article and Find Full Text PDFCureus
December 2024
Paediatrics, Maternity and Children Hospital, AlAhsa, SAU.
Background Maternal diabetes mellitus (DM) is a known risk factor for congenital heart diseases (CHDs), which are of significant concern to infants born to diabetic mothers. Compared to newborns born to non-diabetic mothers, infants born to diabetic mothers had a higher overall risk of developing congenital malformations. This association has a complex pathophysiology that includes genetic predispositions, metabolic abnormalities, and environmental factors during key stages of fetal development.
View Article and Find Full Text PDFFront Psychol
January 2025
Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia.
Introduction: The fact that inclusive education has existed in Bosnia and Herzegovina for twenty years opens the question of how it affects typically developing children, among other things. This paper aims to examine the differences in general knowledge and mathematics of typically developing students with regard to whether they attend classes that include students with intellectual disabilities or not, as well as to determine the relationship of their knowledge with teachers' characteristics and the inclusiveness of schools they attend.
Methods: The sample included 331 students from 18 regular elementary school classes.
Clin Neuropsychiatry
December 2024
School of Cognitive Psychotherapy, Rome, Italy.
Objective: Self-criticism (SC) is a central transdiagnostic factor in several psychopathological conditions, influencing the development and maintenance of symptomatology. The importance of this construct has stimulated quantitative and qualitative research about it. The main purpose of this systematic review is to highlight which qualitative methods have been used most frequently and which are most suitable for studying SC.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!