Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ((166)Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative (166)Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.

Methods: A fast Monte Carlo (MC) simulator was developed for simulation of (166)Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full (166)Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A(est)) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six (166)Ho RE patients.

Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥ 17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96-106.21 ml were improved from 32%-63% (SPECT-DSW) and 50%-80% (SPECT-ppMC+DSW) to 76%-103% (SPECT-fMC). Furthermore, SPECT-fMC recovered whole-body activities were most accurate (A(est) = 1.06 × A - 5.90 MBq, R(2) = 0.97) and SPECT-fMC tumor absorbed doses were significantly higher than with SPECT-DSW (p = 0.031) and SPECT-ppMC+DSW (p = 0.031).

Conclusions: The quantitative accuracy of (166)Ho SPECT is improved by Monte Carlo-based modeling of the image degrading factors. Consequently, the proposed reconstruction method enables accurate estimation of the radiation absorbed dose in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4823788DOI Listing

Publication Analysis

Top Keywords

monte carlo-based
12
reconstruction method
8
166ho spect
8
carlo-based modeling
8
monte carlo
8
spect-fmc
8
energy window-based
8
down-scattered high-energy
8
radiation absorbed
8
absorbed doses
8

Similar Publications

This study evaluates the environmental and human health impact of sewage sludge generated in the Indo-Gangetic region (Uttarakhand and Uttar Pradesh) used as organic fertilizer and landfill disposal. The research conducts a comprehensive risk assessment, including physicochemical and heavy metals analysis, on triplicate sludge samples obtained from 30 sewage treatment plants. The study provides both qualitative and quantitative insights into potential hazards associated with sewage sludge.

View Article and Find Full Text PDF

This study aimed to identify radiotherapy dosimetric parameters related to local failure (LF)-free survival (LFFS) in patients with lung and liver oligometastases from colorectal cancer treated with stereotactic body radiotherapy (SBRT). We analyzed 75 oligometastatic lesions in 55 patients treated with SBRT between January 2014 and December 2021. There was no constraint or intentional increase in maximum dose.

View Article and Find Full Text PDF

In same-day radioembolization, 99mTc-MAA SPECT/CT, 90Y radioembolization, and post-treatment 90Y SPECT/CT procedures are conducted on the same-day, resulting in a dual-isotope environment of 90Y and 99mTc during post-treatment imaging. This study aimed to quantify the impact of 99mTc on 90Y bremsstrahlung-SPECT/CT image quality and to establish an optimised imaging protocol for both clinical practice, and with advanced reconstruction techniques. Utilising a NEMA IQ phantom, contrast recovery coefficients (CRCs) were measured to evaluate the 90Y image quality degradation caused by 99mTc.

View Article and Find Full Text PDF
Article Synopsis
  • MNLFA is a flexible and important tool for data analysis in various fields, focusing on measurement invariance and differential item functioning.
  • The article presents a Markov chain Monte Carlo approach that enhances MNLFA with better handling of incomplete data and multiple imputation for factor score estimates.
  • Key improvements include support for various data types, new diagnostics for detecting differential item functioning, and integration with common regression techniques for easier analysis.
View Article and Find Full Text PDF

Evaluating the Influence of Morphological Features on the Vulnerability of Lipid-Rich Plaques During Stenting.

J Biomech Eng

February 2025

Department of Biomedical Engineering and Science, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901.

Lipid-rich atheromas are linked to plaque rupture in stented atherosclerotic arteries. While fibrous cap thickness is acknowledged as a critical indicator of vulnerability, it is likely that other morphological features also exert influence. However, detailed quantifications of their contributions and intertwined effects in stenting are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!